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potential barrier around the box, (b) the allowabie energy levels for D : 50 A,

and (c) the degeneracy ofthe first four energy levels. : :

2.15 Wave function in a one-dimensional potential well. Plot the most probable

electron distribution in a one-dimensional infinite potential well for n : 1,2,3'
2,16 Degeneracy of electron energy levels in a hydrogen atom.Prove that the electron

degeneracy in a hydrogen atomis 2n2.

2.17 Translatiotnal energy level. A 10 cm3 box contains aII2 molecule at 300 K.
(a) Estimate the-average translational energy of the H2 molecule'
(b) How do the first few translational energy levels compare with rcnT7

icj Can you think about a way to count the degeneracy of the translational energy

. levels conesponding to this average energy?
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Energy States in Solids

So we will start
discussing structures, including lattices and the potentials binding the atoms

into a crystal. Since atoms in solids are packed closely, the electrOn ${alFfi iloatied\
s{,indiuiftal atn$,S,-overlap -and form and, correspondingly, new
electron energy levels.
of the



c arrangement of atoms' To describe a
A perfect bulk crystal is a three-dimensional periodir

crystal, we use an atomless lattice-a periodic anay of mathematical points that replicate

the inherent periodicity "itft" ""*ti 
crystal' Every point in the lattice is identical to

other points. To tbrm un u.i*t t'y'tal' a basis tontitting of one or seVeral atoms (or a

moteculel is attached to each lattice point' i'e'

+*gtd-*t$ei!..b-Pcrs 
(3'1)

Theexactpositionofthebasisrelativetothelatticepointisnotimportant,aslongas
, the relarive position uetrieln,i. t.rir and the laftice point is the same.for all the lattice

points. Maly..crystalq- have the same lattice structure; in fact, I@!1gntfgJ$!90
number of possibplffiil;. fi--i, tb will flrst discuss the diffition of lattices in

real space, followed bv iltT;"dt"tion of the concept of.recint"t11l1tl? which is the

Fo*rier transform 
"f 

#;;;i'nl|t i"ui*' The binding between atoms in real crystals

wiil then be discussed.
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3.1 CrYstal Structure

3.1 .1 Description of Lattices in Real Space

Consider
of view,

the
lattice, a
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shape ancl is called a conventional unit cell'

.'\ Ld#,c.o 1';*il4J )< F{'Lrr-tl*'t'l-r"Ja c-qJ"}''
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reach all other lattice points by a proper choice of integers through the following
construction i"?<r;4 { 1i: !-r^.},J oit i''"r: i"tJ.'L{J i1.k"r 0l#r,t

rB.: Ir3.l "+ t!"?32 t.?1 @al.z*.e*.!,?LqiHttlsse.rs) (3.2)

The magnitudes of a1, a2, and a3 are called the lattice constants. A lattice constructed

according to eq. (3.2) is often called a Bravais lattice. P5imitiyplattipe.+-ec;q5;et9.Dp!

"giq*:.w" 
tu* drawn two sets orp;ffii'iiaifii'idlEctors in figure :.t witn primitive

unit vectors denoted by a1 and az. The other set of vectors, at, and a!r, are not primitive

lattice vectors because we cannot use them to construct all other lattice points by a
two-dimensional version of eq. (3.2). For example, we cannot reach point I through any

linear integer combination of a', and a!r.

Aorimitive unit cellistheparallelepipeddefinedbv the primitive lattice vectors. There
+'r'-.-

ilqgly,one"le!1i""f;"pj1! (ggylnl-g*ly lp9aF.Jdn"qgg|gutiv-epnitcell. Forexample, each

of the four lattice points in the two parallelograms formed by the two sets of primitive

lattice vectors in figure 3.1 is shared by four unit cells and thus the number of equivalent

lattice points in each parallelogram is one. These are thus primitive unit cells. On the

other hand, the shaded rectangle formed by ai and a! is not a primitive unit cell because

there are two lattice points in such a rectangle: the center point plus the four corners, each

of the iatter being shared by four cells. Because the choice of primitive lattice vectors

is not unique, there can be different ways to draw a primitive unit cell, as shown by the

two examples in figure 3.1 One method to construct a unit cell Wisner-
Seitz cell figure 3.1), w_hich constructed

(as shown by the solid and
by dashed linesinthefi gure)p-gp_.g4it.glg:tg,e,q,9l

all the bisecting planes is a Wigner-Seitzformed by

Sometimes, it is more convenient to describe q lattice by the corcugt!g.414!-11yti7"cell.

For example, in figure 3.1, the rectangle foimed by a! and al is more convenient than
the parallelogram formed by the primitive lattice vectors. This unit cell has two lattice
points and is called a conventional unit cell. The crystal can also be constructed by
repeating such a cell.

ASg1gRl,HniJ S.sll F qh"e..Ibr,.-qe-9lrns"+liotal spepp ig degggalgd lJ.jryes&ltigg
vectols- a4{ the three argle*q f_omred betwee:r -them. In the most gengral case, these
,.@A-5.-f,G-.* ,i#-.'*. .p1...-: . . :-it-:t:ri-

three fattice vectors are of different lengths and the three angles are all oblique, as

shown in figure 3.2(a). This lattice is called a triclinic lattice and does not have much
symmetry. TheWnULe_!_rJ"9f a hltigsts O,q*O.c5gra9-L9r-r7e!_.py tlq symmeqy o-peratigns,

,ry!$c! lnglude rotation of the unit cell around a fixe! lattice point, reflection o{1he unit
;li;oi,s u iprcific olane. and inveiion wiih resoect to a laitice noint. A fundarnental
k...,... Y ..4 a:,-:f,-.:__j:<''..!*4-' , requirement on the lattice is that one can fill the entire space by placing a primitive

, .,Wit cell at every lattice point. This requirement puts a limitation on the symmetric
,operations of a lattice. For example, the allowable rotational syrnrnetry operations are
2n , n , 2r /3, 2n 14, and,2z16. No lattice, however, can have 2n 17 or 2r 15 rotational
symmetry.* Given these conditions, it turns out that there are 13 other types of lattice
that have special symmetry operations on top of the z and 2z rotational symmetry of
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(a) Triclinic system

al a2+a3 a+ P +? (b) Monoclinic sy stem al + a2 + a3 a = B = 9ao +y

(c) Trigonal sYstem

at=a2=43
a=p=yct}Oo

(d) Hexagonal sYstem
at--a2iaj

s=p=)Qo y=l)Qo

(e) Tetrahedral sYstem

ar=a2+a3 q=B=Y=)0o

(f) Orthorhombic sYstem al + a2 + a3 a=F-- --900

simple cubic (sc) bodY centered cubic@cc) face-centeredcubic(fcc)

(g)CubicsYstem q = a2= a3 a -- P =7 = 900

il

,

I,

Figure 3.2 Fourteen Bravais lattices and the associated seven systems'

a triclinic lattice, so that thelqqr-e in"lqtaUr4-fyppsolBmvaitrlaitice' These 14 lattices

can be further group-ed in-t#e;;;-t,&...t.;i Point symlr-retry oPerations,(seven crystal

systems) 9r opgr.4{ins ggunO a nieO-tat1ige po-iq! (iuch as rotation and inversion)' as

shown in figure 3.2. For exampl'e, in th; ;dbi; ryrii*, there are three types of Bravais

lattices, thJsimple cubic (sc), the body-centered cubic (bcc), or the face-centered cubic

(fcc). The cubels a primitive unit celi only for the sc lattice and is a conventional unit

cell for the bcc and fcc lattices.

9,..ftSln Wstal planes insideia lattica ar.9 i{entica.l These planes are parallel to each

ott ei 
"iii 

eqiiaffy spdc"O. A common conv;ntion for indexing th-e crystal planes and the

high symmetry dilqgllqlqis,t*n-l"ryrs of the Miller indices 'T\e lyliller indices ofcrystal

iffir;;#ffi*il.d Uy 
^ 

rliJii"t"gers in parentheses (fttl), are obtained in accordance

with'th-e fotlowirig stdps:

l.Findtheinterceptsofthecrystalplanewiththe,axesformed.brthelatticevectors
a1 , a2, a3 in terms of the laitice constants' The origin of the lattice vectors can be

!-
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3at

4at

Figure 3.3 Two identical
planes with Miiler indices
(364) in a crysta1.

. at any laltice point. One can choose any crystal plane that is convenient to use.
Foi example, in figure 3.3 we have two crystallographically identical planes; one
intercepts the axis at 0.8a1, 0.4a2,0.6a3, and the otherat4a1,2a2,3a3.

2. Take the reciprocal of the intercepts and reduce these reciprocals to the three
smallest integers that have the same ratio as the original set."The result is enclosed
in parentheses (ftftl) and this set of numbers is called the Miller indices of the plane.
The example in figure 3.3 yields

(1/0.8, | 10.4, 5 /3) (for inner plane) or

(1 / 4, 1 /2,1/3) (for outer plane) -+. (364)

If the plane intersects at the negative side of the chosen primitive lattice vector, a line
is placed above the number. For example, the six square faces of a cubic unit cell
1figure 3.2(e)J are (100), (0i0), (001), (i00), (0i0), (00i). we can use the sign {100}
to denote all the six equivalent planes. The direclion index in a crystal is denoted by
a set of smallest integers [avw] proportional to the unit vector in the desired direction.
All equivalent directions can be denotedby (uvw). Based on.these definitions, one can
prove that the (hkL) plane is perpendicular to the lhkll directjon.

Crystal planes and directions are often determined by using X-rays or through
transmission electron microscopy. semiconductor wafers are sold with the m4ior crystal-
lographic directions and dopant types marked by the wafer flats. A wafer typically has a
primary flat representing a crystal plane and a secondary flat that is positioned to denote
the dopant type and the surface crystallographic direction, as shown in figure 3.4 for
a 4 in. silicon wafer.

: 3.1.2 Real Crystals

By attaching a basis, which can be one or several atoms or a molecule, to each lattice
'point, real crystals are formed. For example, silicon has an fcc structure and the basis is
'made of two silicon atoms. If we anchor one atom at the fcc lattice point, for examplb
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o-type (lll)

Secordary

dH
e'a
.EF

E$ 6

flat

Figure3.4Semiconductorwafersaresoldwithmajorcrystallographicindicesanddopanttype
;;i;*t;;; u"a t"""tJuw flats' These ar€ common notations for 4 in wafqs'

at (0, 0, 0), the other silicon atom is trcn at (a/4' a/4' al4) as sholvn in figure 3'5(a)'

In a conventional fcc unit-cerl,1it"." are four lattice points and eight sitcon atoms' In

a primitive unit cell, tfr.." *" i*o tilicon atoms. The silicon crystal structure is called

diamond structure, wnicn is shared by several other crystals such as germanium and

diamond. The zinc tf""O.-ttto.tot" liigo'" 3'5(b)l' such as ttrat 9f elllium arsenide

(GaAs), is similar to tire aiamonq ttrytytlit the basis is made of two different

atoms,oneGaandon.eroto*forGaAs'IfwetaketheGaatomat(0'0'0)'ttren
the As atom is at (a/4, r)q, "tiit. 

Since the Ga- and the As atoms are different from

o* unorf,", the zinc ltinie crystat structure 
lras. fewer 

tyTTtq operations than

the diamond structure. G;;G;i"t a closg-packed hexagonal structurel as shown in

figure 3.5(c). ',

Example 3J DensitY of Si crystals

Silicon is an.fcc lattice with a lattice constant of 5'43 A and two atoms per lattice

site. Determine the density of Si crystals

Solution:Anfcclatticehasfourlatticepoints.SincetherearetwoSiatomsat
each lattice point, there is a total of eight Si atoms per conventional fcc cell. Each

"i"* 
*"igftt'z I x 7.67 x l}-n kg, wher3 28 is the lumber of protons anp neutrons'

@i___

(a) Diamond
C, Si, Ge, ,..

(b) Zinc blende

ZnS, GaAs, GaP, SiC,."
(c) Hexagonal Close-Packed (hcP)

Graphite, He, Mg,Zn,Co, ".

lt"

I

i,
iir

lIt

packed hexagonal.
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arrd L.67 x 10-27 kg is the weight of a proton or neutron. The density of Si crystal

is thus
: 

8x28xl.67xlo-nkc ^^, ;lz, -3.n:-:/.34 Xl0-kgm -
' (5'43 x lo-ru mX

@ at which the periodicity of the crystal is disturbed. The

aeftiilffi"G Aivided into the following threq twsgipgiq$'Eggg,3gslnlg+,$'. Examples

of noint defects are vacanqlgg where the atoms at the lattice points do not exist' and

impurities, where the original atoms are substituted by different atoms. Another forrn of

i'!fiiitifect is an r$g[EliligLd&;kpt, where an additional atom is inserted in the space

that does not belong to any allowed atomic site in the original lattice. Examples of. li;,ryg

defWl;;gZMWMThe two simplest types of dislocation are the edse dislocglj?k
-^a sciiwdElpMi as shown in figures 3.6(a) and (b)' The edge dislocation can
d,--4

636nslructea by inserting an extra plane of atoms in the upper half of the crystal.

, The screw dislocation can be thought of as the result of cutting the crystal partway

through with a knife and shearing it parallel to the edge of the cut by one lattice vector.

which intersect a unit
crystal. for the dislocation density and they

on how the materials are made.

is not the story. are many defects

and dislocations along the path of the dislocation the work

(because the

existence of dislocations)

Figure 3.6 Illustrations of (a) edge and (b) screw dislocations. The arrows mark the direction
of motion of the dislocation.
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3.1.3 Crystal Bonding Potential

What holds the atoms together in a crystal? Fundamentally, it is the electron-electron

and electron-nucleus intJractions between atoms that hold thein together. We touched

on the topic of interatomic potential in chapter 1 and will now give a more detailed

discussion, focusing on solids. More discussion on the interatomic potential will be

given in chapter 10, for moleculardynamic simulations:" 
Tlg fg.rcg lnteraction between atoms alwoys consists ofaLpJ.&rgtge attfrytiyg force

$9:-c[prt iancsr.epulsiyefqlc,q &ff]prtru*xsUl::y9r.q:.99"i1"S-r-F4v9,'S9'Ls the

!;iff!-i{ijti* prio"iple,.wtt.o trrdlrfr'"i-sfell glectrons o.g.tl,re nucleiot"!b3-4[qlps be,gin

tq ""Ji6;. 
r*" oit"n_or"d.mpirical expressions.for the repulsive potential between the:

rl

I

i

i

I

il

'

I

ri
1:

rllr

lr

I

..
I'

atoms separated by a distance r are.

lun(r) : (3.3)

i y.*9: u*;1{1* I grn;$arei) (3.4)

where B, (. and -U.o"ate S{nglrlp3l g.o, 4s !ql$, {etermined from experimental data, such as

the interatomic spacing and the binding energy' The differences bsfwgf;lJa{igU$"Hpg.s-

of which will

below.

atom ls , the electrical field

of electrons from the neighboring atom distorts the positions of the electrons and the

nucleus ofthe current atom, creating an induced dipole' Tlg11jge.tiu-"BotenSal b64een

ftdl"nnaro-loT-t)

the induced dipole of two atoms-iA€H{gAbJ

t uo:-A '-.-qts"l-; 
:;* '' (3'5)

-& fe i<.f' h lJr

combining this attractive potential (van der waais potential) with the Lernard-Jones

potential ior the repulsive force, we obtain the Lennard-Jones interaction potential

tetween a pair of atoms i and j in a crystal as

,,,: # - i, (3 6)

'ij 'ij

This potential is most appropriate for crystals of inert atom$ (such_as argon atoms which

form a crystal at low timperatures) that have a neutral, spherically symmetric charge'

Such a polential, however, can also be used to describe the interactions between similar

atoms or molecules in liquidus or gaseous phases' A crystal structure is stable when the

total potential energy of the system

reaches a mir,-oum,. as required by the second law of thermodynamics for a stable

system. Ineq.(3.7),o:(B/A)1/6ande: 42/(48),andthefactorofone-halfisthere
because the potential is shared between two atoms and the summation double-counts

the potential. Values of Lennard-Jones parameters for noble-gas ctystals are given in
table3.l-
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Krypton Xenon

Table 3.1 Lennard-Jones potential parameters for noble-gas crystais

Neon Argon

Crvstal structure

Laitice constant 1A;

e (10-20 l;
e (eV)

" 
(A)

fcc

4.46
0.050
0.031

2.74

fcc
5.31

0.167
0.0104
3.40

fcc
6.13

0.320

0.0200
3.98

fcc
5.64
0.225

0.014
3.65

' Soarce: Ashcroft md Memin, 1976;

Example 3.2 Lattice coilstant

Determine the lattice constant of an fcc crystal described by the Lennard-Jones
potential in terms of o in eq. (3.7).

i.,'

'' Solution: We assume that the nearest neighbor distance is R. We first compute the
potential energy for any one atom i interacting with the rest of the atoms in the
crystal. The total energy of the crystal with ly' atoms is thus 1//2 times this energy.

' From eq. (3.7), we have

i,.,.
,ltil

(83.2.1)

where p;i is the interatomic distance in terms of the neighbor distance R. For an fcc
crystal, we can deduce that

Lfi':12.13188 I = 14.45392 (F,3.2.2)-6

^",=YT((#)'-(#)'\

dR
€2N

which leads to

Ro/o : 1.09 (83.2.4)

The observed values for Ne, Ar, Kr, Xe we Rs/o = 1.14,1.i1, i.iO, 1.09, very
close to the calculation.
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important. FundamentallY,

However, unlike the van der Waals force in molecular crystals or the electrostatic force

mronc
Empirical Potentials have been develoPed, such as the

silicon (Stillinger and Weber, 1985). ExPressions for varlous empirical Potentials
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the atoms. In Lnis case we say the electrons are delocalized and can wander throughout

the crystal; in other words, they become free electrons. Later, we will see how the

delocalization of electrons can be explained by solving the Schrcidinger equation.

3.1.4 Reciprocal Lattice

We know that 31-y3efio$iglqlgtt,o.l cal be elpaqdpdas a Fqurier se,rips. For exampie,

if a time-dependent function /(l) is periodic with a period of Z, it can be expanded into

a Fourier series as

r (t) :"i_ (','r" (T,)* Dn cos (T,))
@

: I (o!r"t"'' + b!ne-in't1
z:-@

(3.e)

where an and bn are the coefficients of the Fourier series and a'n and btn in the second

step can be obtained by expressing sine and cosine functions as complex exponential

functions. The angular frequency a : 2n lT is the Fourier conjugate of the temporal

peiiodicity such that ,iar - 1 , which ensures that /(/) is periodic for every A,t : T;
that is, /(t * T) : f (t).
. in a crystal, the atoms are periodic in space and, consequently, we expect that some

atom-related functions are periodic. The simplest example is the potential energy, which
should have a periodicity coresponding to the unit cell. Let's first consider a one-

,iiimensional lattice, with a lattice constant of a. {gglig$f_epg",4gLl-fylgiggJk),
g$1p.:gd*ity a, ! (l :, f (x + s\,sqgopg.limilarfr ex.qg$g{ j,ato a F*ouris1.-sp.5igs,

f (x): L @rr'"0"' lbte-i'k"1
n:-@

(3.10)

where the wavevecto-r, k*.= 2nla,'jst4"e_ FoJ.np_l.c-oidUgate_tg"cp-aJ!al.gefr,gdisrty..a.
Using,eq. (3.10), one can easily show that /(x) repeats for every Ax : a; that is,

'71*+a7: f@).
"' The above example is for a one-dimensional lattice. But crystals are three dimen-
sional., How can we expand a function that is periodic over the three-dimensional
crystal into a Fourier series? We will use the charge distribution in the crystal, n(r),
,as an example. It should be invariant with any translational lattice vector R; that is,
t(r + R) : n(r). We will first give the following answer and then show that the given
Fourier expansion indeed satisfies the required periodicity,

n(r) -- Dn*rt"" (3.1 1)

G

where G and the inverse transformation are given by

G : mrbr + rn2bi + m3b3 (mt, rnz, /n3 zlre integers) (3.12)

In": 
v I

unit cell

n7r7e-i"Gdv (3.13)
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md (br, bz, bt) are conjugated to the primitive lattice vectors (at' az' ag) thrcugh

b1 :2r(a2 x a3)lV,b2: 2tr(at x ai lV,bz :2r(a1 x v (3.14)

where V - ar . (a2 x a3) is the volume of the

easily prove the following relations'

bi:2n6ii where 6;; :ai.

the third steP and the fact that m; andnr are integers in the

the new set

.and 6;; is the Kronecker delta' With the above definitions' we show now that n(r) is indeed

invariantwithanyt unrtutiJuituttl."u""to.intherealspaceRi: n$t*nzaz*nzaz),

where n1, n.2, atrd n3 are integer

n(r * R) = I.n6ei("+R)oG - f n5sit'c+;n'G
GG

= i n6r,..c +i2n(nwi+nzm21'umt) - lneei"G = n(r)
-L G

G

ENERGY STATES IN SOLIDS 89

40 50

2-Theta (deg)

(a)
(b) \

. Figure 3.9 (a) X-ray 2-theta scan of a germanium crystal and (b) an electron diffraction pattem
. for a bismuth nanowire (Courtesy of Dr. Z.F. Ren and Dr. M.S. Dresselhaus).

signals in electrical engineering, or the spectral-dependent radiative properties ofmatter,
which conveniently express time-dependent electrical signals or electromagnetic fields
into stationary specffal properties through Fourier transformations. The representation
of properties of crystals in the reciprocal space assumes a similar role.

3.8(b), the f
reprgsggtp $e
bLtige-

lattice, and f-I the [11 ll direction ofthe real

Although a very abstract concept, the reciprocal lattice can actually be easily mapped
out with diffraction experiments. When electron waves or X-rays (electromagnetic
waves) with the proper energy are directed onto a crystal, the reflection or transmission
occurs only along specific directions, as shown in figure 3.9(a) (X-ray reflection) and
figure 3.9(b) (electron transmission). Such phenomena, known as diffraction, can be
attributed to the superposition of the incident waves and scattered waves. Consider an
incident wave (an electron beam or an X-ray beam) from the source along direction k.
At any point in the crystal, the magnitude of the wave is proportional to eik.(r-rr), where
r, is the location of the source relative to the origin of coordinates, as shown in figure
3fO1a;. The wave scattered into the detector is then proportional to n(r)eik'.(ri-r),
where k/ is the propagation direction of the scattered wave and r7 is the position of the
detector. Because each atom scatters the incident wave, the total magnitude of the wave,
S, at the detector is

,ik.(r-r1)n 1r;, 
ikt t(ra-r) 4y _ ,i (k/ira-kor")

,.)
a.
(u

6
c
0t

(1

(3.1s)

shole

whole

c(

G
crystal

nari(G+k-k')'" 4y (3.16)



NANOSCALEENERCYTRANSPORTAND 
CONVER: \

Speoimei

eik.(r-rr)
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r .;,, ' sanple at a lixed direction, and the diffracted X-ray is measured by a fixed detector;

refer to figure 3.10(a). The-crystal is rotated to change the angle of incidence 0

[figure 3.10(b)] with respect to a special crystal plane. When thb Bragg condition

is not satisfied, the detector will register very little signal. But when crystals are

rotated to the positions where the Bragg condition, eq. (3.18), is satisfied, the

detector will register a peak. A typical scan curve is shown in figure 3.9(a). Different

peaks correspond to different crystal planes. For an X-ray of wavelength I A and a

hrsrorder diffraction peak at 0 :30", the corresponding spacing between the two

crystal planes is

IAa: _: 1_4,* 2sin30o -^-

3.2 Electron Energy States in Crystals

ln the previous chapter, we discussed the and harmonic

,otscillators. These energy levels are

and formnew wavefunctions and,

energylevels. We energy levels become more continuous than those

individual atoms.

most fundamental characteristic is the periodicity of the

in many new features to the allowable energy levels of
electrons as well as phonons. In this section, we will start from a simple one-dimensional

: model to examine the effect ofperiodicity on the electronic energy levels and then extend

ttie discussion to three-dimensional crystals

3.2.1 One-Dimensional Periodic Potential (Kronig-Penney Model)

i;et us,consider a simple one-dimensional lattice. The potential field is a periodic func-
tion, as sketched in figure 3.1 1(a). At the location ofeach ion, the electrons are attracted

the ion and have the lowest potential. As an approximation to the actual atomic
distribution in a crystal as in figure 3.11(a), we consider a square periodic
as shown in figure 3.11(b) and want to f,nd out the energy levels, assuming

is only one electron inside such aperiodic potential.Aq + the c,llslballhEhJdlgg€&.
the oeriodic table. the existence ofmanv electrons in a

U: Poten{al Ene.gy

-b 0 aa+b
(a) G)

3.11 One-dimensional periodic potential model: (a) sketch of atomic potential;

vanishes, that is, when

Example 3.3 X-raY dffiacrton

One waY of using

Detector

of eq. (3

the crystal structure is the rotating

Souroe

one-dimensional case'

where we have used eq' (3'11) to expand z(r) into a F

#;#;;;;G;;:i):; ;; ;li; "",yi,s 
tunction in the crystar with both negative

and positive values, the Jil" ti'#"i *iiif;" tr*" to zero excePt when the exponent

crystal method. ln
wavelength.tr is directed onto the Penney model.
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wavefunction lnside o"ne-unit-c-.ell. For the one-dimensional problem being considered,

d';*tfic? itifrd'raag.niLuOp of k in the x-direction, eq. (3.27) is

' Vlx + (a + b)l : tU (x) expfik(a * b)l (3.28)

h'4:+Q-E)v=o
2tn dxz

tion U(x) is given bY
The Potential distribu'

one-electron, rectangular periodic

The Schriidinger equation is then

u(x):

which gives

,y:ceQx +De-zx?b <x <0)

'A+B:C+D

'. We should the wavevector ft from

in eq'

explain later, more wavevector k. We want to find a relation

0

between k and E, which is equivalent to a relation between k and K.
From Bloch's theorem, r" kno* that iflhe wavefunction lor,-b <.r < 0 is given

uy_SS Q?']Ilg.e.-ry3y9*rl:tior-rf9ra.5I < ?+biqthqngiy.g!byes,.,(3.23)muftiplied
U.y*lBltk(f* b)1. The continuity requirements for the wavefunction and its derivative

AIX=aarethen

^iKa,Ae---- + 6r-iKa = (Cs-Qb + Oeab)expfik(a *b)l (3.2g)

,-l : iK(AeiKo - 6"-iK1 : e(Ce-Qb - DrQb)exptik(a i- b)l (3.30)

:r Now we have four equations, eqs. (3.25), (3.26), (3.29), (3.30), and four unknowns,

A, B, C, D. Examining these equations indicates that this is a set of linear homogeneous

equations and is thus again an eigenvalue problem, and aso_lltiojl.e-x_ig1p g1{y..y!e_q $q
determinant of the coefficienF A, B, C, and D equals..zero. From this condition, we
arrive at the following equation

Q2-K2 sinh(pb) sin(Ka) * cosh(Qb) cos(Ka) : cos[k(a * b)] (3.31)
2KQ

'where "sinh(x)" and "cosh(,r)" are hyperbolic sine and cosine functions. For a given
wavevector ft, the only unknown in the above equation is the electron energy E, which

, is embedded in both K and Q. Thus the above equation can be used to determine a

relationship between E and k. To get a better idea of what the solution looks like, let's
and Us -+ oo, but keep Q2ba/2(: P) equal to a constant. Under this
sinh(p&) x Qb, and cosh(pb) t 1. Equation (3.31) reduces to

Uo -b<

subject to the followins penoqiglty"Iq*1",I, 
,rr, ..

I uri + 91b) : ,{,9)'

Solutions for eq. (3'19) are

v : AeiK* + Be-iK' (o < x < q)

(3.21)

'::'"';'^

t?"

l

,i
li

lt
!l

sin Ka * cos Ka : cos4b

can solve the above equation for (Kn) as a function of (ka) and use eq. (3.24)
out ailowable energy E from K. One important observation ir -OgtJhgguCoi-

eq. (3.32) can belarger.Ihan
eqgatiol tras ns solutioq,for

1 .whereas the right-hand
those valge'g .9{-.K (aqd

yalugs gf thq f_e-ft-[4nd side are largq4,ulhan, one.
graphical representation of the left-hand side is shown in flgure 3.12, where tle

pght-hand side is bounded within t-i, 11. In the shaded region, there is no solution for
K, and thus no electrons with energies couesponding to such K vaiues exist. We can

;.f.flvert 
the sotution for K into-energy, and redgaw the-graph as a funcrion 9f kc as. qhgy4.

,ln hgqre 3.13(a). The figure shows thar, for q4phwawveclot&_therearqqultjpkldues
fgr$e el qglpggggpSgr- E.
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+
First Brillouin Zone
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Figure 3.1 4 The Brillouin zone and Wigner-Seitz unit cell of a one-dimensional lattice.

values. The and the wavevectot

way of representation is called the fg4u!"43ye ffielentation. Often, only hal f of the

uuno, to, i 1a1, needs to be drawn ffiau# fhE 
'b;1ffi?flffifi"irjtric for both positive and

-4
'... . l r,F;..!,!";r..," ..

of Kalt' Because the right-hand side

Fioure 3.1 2 Left-hand side of eq' (3'32) as a function.'

is-always less than or equal * ""=",'it*. 
are regions (the shaded area) where no solution for

Ka/n exists, and thus no electrons.exist with energy corresponding to the values of K in these srfa, s:0,tI,
sffffit?ottsciccm'4fry"'ft?"theone-dimensional lattice being considered with a lattice

.constant equal to c, its reciprocal lattice is also one-dimensional with a lattice constant
'equalto2r 

/a. The Wigner-Seitz cell in the reciprocal lattice, which is the first Brillouin
zone as we explained before, is shown in figure 3.14. The boundaries of this primitiye

gpit cell in the reciprocal space are at In/a. Thus ft. represents the lattice vectors
'Constructed using the primitive lattice vector of the Wigner-Seitz cell in the reciprocal

space for the one-dimensional lattice. When we generalize to three-dimensional crystals,

will be replaced by the reciprocal lattice vector G In most cases, thg_g_nergy gap
- -t#'4. :s.{at&cg;. .q^4: G. This is not a coincidence

ul

ul

klFla'1

its wavevector: (a) extended zone representation;

at zone boundaries, that is, when k
This

mechairism is not very different from the of X-rav and

electron beams that we discussed in section 3. 1.4. We also plotted the energy dispersion

of a free electron in the reduced-zone representation in figure 3.13, which does not show
an energy jump at k^ but is otherwise similar to that of an electron inside the periodic
potential. The main effect of the periodic potential is to modify the band struptqre

neu km, as a ieiul-t'Utifrooitriaciiori oi th6'eiettron *u*.. Mo.. discussion on wive
; .. . _.- - .-a-.: j',".:i. tr r. rr.. r ".'-;--. -. . ....v,
rnterterence wrll be grven rn chapter 5.

We now determine the value of the wavevector ft in the Bloch theorem, using the

This boundary condition deals with
think that the two end points are

different from the internal points. For many applications, however, it is not necessary

distinguish the boundary points from the internal points, because a crystal usually
,[as a tremendous number of lattice points (this is not true for quantum wells, quantum
wires, and quantum dots). The Born-von Karman boundary condition requires

P,qlnls p.9.egual !o,..e.4cll-o*tler;
3. I 5 (a)l ar9_9J*elgng*!9

ut
tU

o
oc

TIJ

c
e
o
o
Irl
p
o
,N
N
E
oz

k I (117l,

Figure 3.1 3 Electron energy as a functiol of

Oi reduced zone representation' Dashed iines

Kronig-PenneY model'

/
1

rll

are free electron energY levels' Solid lines

3. ls(b),

V[xfN(a*D)]:V(x) (J.JJJ
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EnergY En*gy Energy

1 w1aa1 0 0 01
p-type

Semiconductor
Iosulator lntrinsic

Semiconductor

(c)

Semiconductor

(a) (b) (e)

.Figure 3.1e Explanationofmetals,insulators,andsemiconductorsbasedontheone-dimensional

band structure. (a) Electrons in metal partially fill a band. The top-most level (E1) is called the

Fermj level. (b) Electrons filI to the top ofthe band. When the energy gap Es is large, no electrons

can be excited to the next higher energy band and the material is an electrical insulator. (c) When

the energy gap Eg is relatively small, some electlons can be thermally excited to the next higher
energy band (called the conduction band), leaving the same number of empty states (holes) in the

, . valence band. The material is an intrinsic semiconductor. (d) Impurities (more commonly called

dopants) may have an energy level close to that ofthe conduction band. Electrons can be excited

from the impurities and fali into the conduction band, resulting in more electrons than holes. Such

a semiconductor is called an n-type semiconductor and the dopants are called donors. (e) When

the impurity energy levels are close to the valence band, electrons are excited from the valence
.. band into the impurity level, leaving more holes behind. Such semiconductors are calied p-type

and the impurities are called acceptors

Yet still the mean free path of an electron can be as long as thousands of angstroms, and

the number of atoms in a cube on'the order of one mean free path is enormous, -106
to -108 atoms. It is amazing that an electron can zigzag through these atoms without
getting scattered. Because ofthis behavior, we often treat electrons as a gas and neglect
the ions completely, except when considering their occasional scattering effect.

there are N allowable wavevectors for a latticechain with I/ iattitepointiipecause each. 0

alkali metals and noble metals that have one valence (free) electron per primitive cell,
the band is only half fillecl since there are only N valence electrons in this case, as

N Cells

_J_

Metal n-type

(d)
(a)

s the two boundary Points in (a) into

Fiqure 3.1 5 The von Karman boundary condition joinr

a feriodic looP in (b)'

Using B.loch's theoreg-r,,eq' (3'23) can be wi$e&'-as

V(x) : V(x) exP[i'tN (a + b)fi (3'34)

ablg'yp'v'w9c'19rs- of lhgp-Jpcb w ave

The abov-e,eqq3fogimposes gqgdilig4g-pp the allow

id;ide G periodic Potential

k: #+b):T{n = o' +1' +2" ") (3'3s)

r.t '- 1l l'- r*

..{.,4;l}"., <', i
LL u;- l.-':,:"" i .j-'r.

I;: ."i' r- i f, r'"t" ,. -.

potential from the periodicitY reduces the sPatial extension of the waiefunction.

t'i re t"t-,1-J*ti I
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ands in Real Crystals
3.2.2 Electron EnergY B

(b)

Figure 3.1 7 Electron band structures of (a) copper (after Mattheiss, 1964), (b) silicon, and

(c) GaAs (after Chelikowsky and Cohen, 1976). Copper is a metal because the Fermi level falls

inside the bands. The Fermi level for Si and GaAs at zero temperature is at the top ofthe valence

pand (E - 0). Silicon is an indirect gap semiconductor since the.minimum.of the conduction

land and tlat ofthe valence band are not at the same wavevector location. GaAs is a direct gap

semiconductorbecausetheminimaoccuratthesamewavevector(k:0forthiscase).Allbandgap
values are rhose at 300 K.

S E :0 so that all bands below this level are filled. Above the filled bands, an energy

gap exists in which no electrons are allowed at T : 0 K. The values and locations of
the energy gap are different for dissimilar crystallographic directions, and the absolute

rninimum gap is called the bandgap. GaAs is a direcigap semiconductor because the

minima of the conduction and the valence bands occur at the same wavevector. Si is an

indirect gap semiconductor because the two minima do not occur at the same wavevector.

Direct and indirect gap semiconductors have major differences in their optical properties.

Direct bandgap semiconductors are more effrcient photon emitters, semiconductor lasers

made of direct gap semiconductors such as GaAs, whereas most electronic devices

,are built on silicon technology.

that the

second-order terms often are used.

(3.37)
m22 tn33

(a)

''

L
l

!

t''
,ll
rl,l

Cu

Femi Level
.u Indirect

(

\

m;;:-"' (0t E l0ki0k i)
'b6arffin*rfcq' "

(3.38)



Figure3.lsConstantelectronenergysurfaces-inreciprocalspace(ork.space):(a)aspherical
band such as in GaAs; tUl "" "ifipti"^'iband 

such as in Si (after Shur' 1990)'
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We will make the following assumptions in the analysi.. ES!*_r*gpgiA-eflhp 
r '

fgggg_ ig[e;39tio_4 be[ween th.-9*;1gsqp,t Agighbgf$*0rdy. Second, the interaction force ;:;;

qgtyqel._gtgrs" $ 3squq9_d to b,e.a-larmonic {g1g_ejy}ich pbpys },lqo}e. s" law) wiih '- 4*

spring constant K. This assumption can be justified in a similar fashion to that done for
harmonic oscillators. Now consider a typical atom /. The displacement of atom j from
its equilibrium position xrQ is

uj:xj-xoj (3.39)

The force acting on atom / comes from two components. One is due to the relative
displacement between atom (7 - 1) and atom /, and the other is due to the relative
displacement between atom j and (j + 1). The net force is then

ENERGY STATES IN SOLIDS 101

' Fj:K(uj+t-uj)-K(u1-ui-) (3.40)

At this point, we have two choices for continuing this discussion. The first choice
includes writing out the potential and the Schrddinger equation, and then solving for
the allowable energy. But for our understanding here, a classical approach is easier to
grasp and the quantum effect can be added into the classical solution later. Let's apply
Newton's second law to atom / to obtain

i i dzu;', m-+ : K(u j+r - u j) - K(ui - u1-) Q.41)dtz

Na

F

3.3 Lattice Vibration and Phonons

The previous section deals.with the-electron energy levels in solids' We now turn our

attention to the vi,b;*]9q91 gng,rgy tgv-glq 
''o-'{' 

el9ms,' or the lattice vibration' Here' the

term "lgtliqell -r*lv-*punq ;;e.'l?irit" 
'se*h"t;-witljts-'basis'(w; 

recall that the lattice

in crystallography is a #;;;;;i.Uril.ii"i, ofperiodic points in space)' Similar to

what we have done f"t t;;i;;;ni" tn"'gy ltuels' a simple one-dimensional model

will render the funclamenta-l .t *o.r..irri.r Ii tutti.. vibrations. Therefore' we will start

our discussion *itt u on"]ai*lnJonal model and then move on to more complicated

u

cases.
,it

where ja !s thq,Qj,sgrgtg egujJihrrium locatiqrr of atpm J:, alrslhs_ftaqggegyJgd*.irlhe_
wavevector. Tbe maior difference between this "guessed" solution and the conventional
contrnuous wave. exp[-i ( at - kx)], lies in the use offjbll as q 4r*s.g19qs*-l4tfigg_LCS4di_
IBlgJg-ther than"an inflnitely divisible continuum.ootaitot. ,tG;;Jfi;;ntinuous

fi:||}il,";:*se 
talking about the vibration at locations other than the atomic sites is

3.3.1 One-Dimensional Monatomic Lattice Chains
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mathematically described by Eq. (3 .43)

e are a familiar concept ln the vibration

Theallowablewaveve-c-t:rrcan*similarJr!e-d*e19g'r'u1e{

Uqp r341![Srg*"3s' w; ai$ r.91 
!]-99 ilon 

s 
:

Figure 3.21 Phonon dispersion of a one-dimensional (a) monatomic lattice chain and (b) diatomic

lattice chain. The Debye approximation use a linear relationship between the frequency and the

wavevector. BZ stands for Brillouin zone.

iletween the !:.gqq-"-t$y.ppd-"thp-.,wayevec-tor. This approximation is valid at low fre-

iiuencies but is not a good approximation at high frequencies. Illhe vgry l9w f_reguenc.y

iegion the laqtic.q yibratigq garnes the sound wqve. We will return to a discussion of the

iJeLye approximation in the next section. 
" -\.-,-

.,..., u.l_1.
i.--

3.3.2 Energy Quantization and Phonons t*' 
' .. ,-t=;-,' ;:''

ihe above treatment is based on classical mechanics. In the classicat lJutlon, ttre

vibrational energy at each frequency is determined by the amplitude A in eq. (3.43).

If we use the Schrcidinger equation to solve the same problem, we will witness that the

dispersion relation is the same. The difference is that the energy ofthe lattice vibration*
is quantized. This result is similar to the case of a simple harmonic oscillator that we

dealt with in chapter 2, for which the vibrational frequerrcy is the same as that of the

classical mass-spring system [eq. (2.56)], but the.energy of the oscillator is quantized.

$J p*p.\"te'euenc;determined by eq, (145), $.r9,a|f-o.ryable g.qergy tgyg|p. 4pe

rl.

il ;i

This

(3.47)

2

j* Bz

0

kl(nla)
(a)

E
P

I'

sctors that

Fioure 3.20 Snapshots of the atom displacements represented by two different wavev'

dilterbv 2x la.Tne aisptaceriel"i' of..tt'i u'o"" *" tt'" 'u*"iot 
th" two given wavevectors drawn

in the figure. The 
't'o't 

*uutf 
"ngtt' 

mode means that atom displacements would exist in the empty

snace between two closest;;:;t';;il;"oip"ttitr"]ii"'' 
the allowable wavevectors for

ptt"*tt *" ff*ted to the first Brillouin zone'

Substituting the guessed solution (3'43) into tO',::-'Ot':.*" t"'

-tn,r] - KLeiko + e-ika -21 Q'44)

-l 0

k I (nla)

(b)

\fr
from the vonKarman Periodic

,$
d
\J

.J
a{o'(-LJJ

I.{
n"t

ormal modes

and musical adnrOgtie relation, hl)" : hk. Under the phonon picture, we can forget about atoms

and consider the lattice waves or the phonon particles in a crystal just as we treat the

waves and photons in a box. For many materials (nonmetals), heat
conducted From the anilogy bdtwEbn photons and phonons,,i

I

i,i

. .!v la11i99 viblaiion!.:
to expect that lattice

instruments. between the vibrational frequency

;,g';J"*g:Hl^'J::1fifii'i.1t::ffi $.;;J''ii''s'i"i.;'nipisnontinear,
very orten,n" 9g" pq::lfifp""ti;l J ffi ; ;" o""' u ti n" ur di sp ersi on relatio n tc;gi6ai heat conduction should obey a law similar to the
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(b)

Figwe 3.22 In the long wavelength limit, the two atoms in the acoustic phonon branch vibrate
in phase (a) but are out ofphase in the optical branch (b).

3.3.4 Phonons in Three-Dimensional Crystals

In a one-dimensional lattice, the phonon waves a.re longitudinal waves. Ig-aLhr-e-e-

{g9"ns_i9la_1, 
c.tfi.lql?. the atom-q ca-n vibrate in three dimensions. Thus, we will have

.fug:ibfAtipgal_!13n"cf9,s fof the acoustic modes-one longitudinal and two trans-
verse branches. Furthermore, if tlqp are ,n atoms per lattice point, then.3(m.*l)
optical branch-e9,"_eligt, ql ryl,ipt 2(m : l) are rransyerse optical plonons ,and- the
req*{"e-.lgirgilgg*hdp.p$-9.a! phongpg, In a rransverse wave, the atomic displacement
direction is perpendicular to the wave propagation direction. The two transverse branches
will coincide with each other if the two vibrational directions are symmetric. As with

': electrons, phonon dispersions along different crystallographic directions are different.
Figure 3.23(a) shows the phonon dispersion relations for lead, which has an fcc structure
'and one atom as a basis, and thus three acoustic branches along each crystallographic
direction. Figure 3.23(b) shows the phonon dispersion for Si, which has an fcc structure

two atoms as the basis. Thus, Si has three acoustic branches and three opticalbranches
in each direction. In some high-symmetry directions, such as the [1 001 directions, the

transverse phonon branches coilapse onto one curve.

3.4 Density of States

the previous chapter, we introduced the concept of degeneracy for quantum states
have the same energy levels. From the one-dimensional electron model, we see
each wavevector k corresponds to one wavefunction and thus two quantum states

(\"
al
v

F

f1
fi-

I
';.1
D

{t,

t,i

llri,'i
t:l

I

")'
;i

called bosons.

;

ti.

iiLi

after we include the electron spin. Because the dispersion relation is symmetric for
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3.4.1 Llectron Qbnsity of States
I

Consider a spherical paradoHc band with the following relationship between the energy

and the wavevector,6
Ht2
o

5'5 hzkz /: 
2** \k''kY'kz._ i

2n 4n

k*-. -t*J

t^h<*
,-Lat f
r{^-Q-

0,+ I

Na

KX where fr is the magnitude of the wavevector,
t{-d(r

4+4+4 t* J
For each constant E value, there can be potentially many combinations of kx,ky,kz
satisfying eq. (3.48). To find the density of states, we refer to fi9tre3.24. The allowable

inechanical state ip three-dimensional t-s paceis {fu / L)3 The number of states between

k and k + dk in three-dimensional space is then

Figure 3.23 Phonon dispersion relations for 
l"-1U:U-:*"""; 

both have an fcc lattice' Lead has

one atom as the basis, so only acoustic phonons are present' Silicon has two atoms as a basis'

and thus there are ttr"" u"oo"iffi;;t";;;';il;ptical phonons (lead afterBrockhouse et al''

1iii, *asiiicon afier Giannozzi et al'' l99l)'

both positive and negative k values' the degeneracy for electrons at each energy level

can be regarded as 4. in_thre" o^i-rn.r,rignul-crysialq, 
however, the dispersion picture is

tota'y different because #i;i'ilil;;ffia!;..ton has its 9wn disp.eJslgnrelation

between the energy -d ;;1;;iJt*'trh-tlt-'-t*iqt palentially- many conrbjqatisns

Hffi"##ii?l r;;;ii;;;;'""*v" e' it'o*n in ngure 3'24' rot the constant

;Jr;1"#T;;;";"r# in;;^"-i"l;;or'erical band, that is, equal effective mass

teq. (3.37)l but in two Oi**'ion'' Clearly' there can be many wavevecto$ on each

constant energy surface ii"tltt" irt-energy levels in solids are quasi-continuous' we

use the concept of d""ri,;;;;;;, io o"r.Iiu" the energy degeneracy. we will discuss

next how the density "t[l.- 
fu;;; ura i"m!*pressions for the densitv of

states for electrons, phonons, and photons, usrng srmplifiei dispersion relations derived

earlier.

st sl".$,$l&C
L*' fiq.3. 24

(3.s0)#states:2 x
(2n / ft2

tr.8

yhere the factor of two accounts for the electron spin and V (: L3) is the crystal
volume. In the above treatment, we have implicitly assumed that kand E,q9 co4tinuggs
functions. This shottld be y_{!{aq_!gnC,?p thg g9gr}9L_of*a!qms.!4_the-,systemjs,large
Lnounn flf is laree).
:; P ). .-.-.. -e !

On the basis of eq. (3.50), we can define the density of states as the number of
quantum states per unit interval of the wavbvector and per unit volume,

-.' ; 1.

# states between k and k * dk , kzr t+{ *XU"c {

)

J
bd_'.*
€sf{C rr-
Ut +e

VdE

SEFS+
(3.s2) k

where we have used eq. (3.48) to replace k and dk in terms of E and dE. Sometimes,
we also define the density of states on the basis of a frequency interval (as we will do
for phonons). ltt-"-1"9-.FqlS,"gq (3,52) iq uqed most often. A schematic of eq. (3.52) is
shown in figure3.25.

The density of states is a purely mathematical convenience, but nevertheless, it is
geptral for correctly counting the number of electrons and the energy (or charge and

that they carry. As a simple example of how the density of states is needed,
evaluate the electron energy of the topmost level at Z : 0 K, that is, the Fermi

y. At 0 K, the from the lowest

State

4$ff't":
filline of electron ouantum states starts

.rE| fSF\"'re (r"tgta -1fr\ \ Vt. 1'

(r -e.)
energy
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3.4.2 I'nonon Density of States

T*gplqngl.g.tsp-gr.9i-qp r43ti9n di$ers cpnsiderably,from the elec[9n.{iqpersionrelation,
as.is seen by comparing eq. (3.45) with eq. (3.37). Rathep_"tlrgq"!r"4Jurg spjns,, phonons

have different polarizations (branches) ip c1y-.q.1a1s. one common simplification to the

piriibri dispersion i-s theDebye qpp-191iryqion, which assumes a lLlSg tgl^!igl-qe!y99n'the frequencY and the wavevector,
' ' iI':-f: i;a"i:ii :'rir: i :

: ,,, 
=, 

"r_lH.=*:P_*. (3.s4)

Following a similar procedure to our previous treatment of electrons, we calculate
the density of states of phonons. The volume of one phonon state in k-space is

' (Ztt /L)3 : (2it)3 /V . Under the Debye apprciximation, the den"sity of ,sla(eg.fo;phopons
pgl-g:li!Jglqme a1ld p-q urylf*eg*sqcy interval is then

dN .+r*an11zr 1t73 3u.2,,,utrt)t : i 
13.55.1__-E;{ vda - vda 1o2",3. zJr-ub

where a factor of 3 has been added to account for the thr,ee.polariT4tio4s.-.o-f plgnogs.
: The Debye approximation, as represented by eq. (3.54), implies 1l:J all phonon

branches have the same speedin all directions; in otherwords, th"d;&i6iqiq9_qopic. In
reality, even a cubic crystal does not have the same velocity in different crystallographic
directions. This isotropic medium will therefore have a different lattice constant dD
compared to real crystals. To calculate the equivalent lattice constant ofa Debye crystal,
we require that the total nurnber of states in this isotropic crystal equal that of a real
crystal. we assume that kp is the wavevector at the boundary of the Brillouin zone, that
is, kp : n /a p intheDebye model. The number of states existing in a real crystal having
N ions is equal to 3N.* A Debye crystal should contain the same number of states,

Often, E" is taken as a reference Point and set to zero. From the above ielation' we

can calculate easilY the Fermi level from the given electron number densitY ald the

effective mass.'

tuample 3.4 Fermi level

A gold crY"stal has an fcc lattice with oqg*ggld alom P,eI latticg Point and a lattice

Estimatetbe electlon

level !1 a gold c1ystal.
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Figure 3.25 Density of states of electrons in a bulk crystai'

't until all electrons are placed into
level and moves up from one energy'level to the nex

distinct quantum states. The nuinbg1.gf.glectrpry pe1 uqi! vllume-ag z =.QF-it

LM
312

- 3tr2 h2
(Er - E")312 (3.s3)

is identigaLto that

and thus,fotu valence

^1i -1O"-cm -

( )

3N :3 x 4rkb/3
(2r)r /V

(3.56)

which gives

From eq. (3-53), the Fermi level at 0 K is

/ 6o2 N \113 / rrv \t/3
{r: or:{' u ) o"r:\*) (3.s7)

where t2 is--99$ed"the- Dftye 9gtgtr wqyevsgtor. 6;nespondingly, the Debye frequency
rs aD - UDkD.
ii ti'strouta"6e hoted that the Dcbye apprpprimation do-es-uot represent the reality at the
Biiflorrin ?qnp hqllndary, wtreieftl dirpffi;ir'flat, as shown in figures 3,.21anaz.23,
ds well as eq. (3.45). It is also ngt.suitable for optical phonons. For the latter, a much
better approximation is to set all the frequencies to the same value, that is, rr; : a,,r
(for each branch). If there are N/ lattice points in the crystal, there should be a total of
,{/ modes for each branch, with the degeneracy equal io N/. This approximation was
first used by Einstein to explain the specific heat, and the resultant theory is called the
,Einstein model. A more thorough discussion regarding the Einstein model will be given
in the next chapter.

metals.

n y : {*tzn2n)43 
_ 8.66 x 10-1e J : 5'4 ev
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3.4.3 Photon DensitY of States

{
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Figure 3,27 Differential density of states and solid angle.

3.4.4 Differential Density of States and Solid Angle

Although the density of states is usually defined on the basis of the magnitude of
wavevector k or energy, we found that it is useful in the study of transport process

to define a differential densiry of states. We first define the solid angle f2 in ft-space as
l(figtre3.27)

o

.A

H

(h

o

A

H

Acoustic Phonons

Phonon tr'requencY co

(b)

(3.60)

Where dA" is a differential area perpendicular to the k direction and 0 and @ are polar

'ind azimuthal angles, defined in figwe3.27. With this definition, it is easy to show that

the solid angle over the entire space is 4n . The differential density of states, along a

specific wave vector direction k is defined as

r' dD(E,k): No. of states within(E, E + dE) and dQ D (E)
(3.61)

4r
where the second equality applies to isotropic dispersions only.

3.5 Energy Levels in Artificial Structures

We torached upon quantum wells and quantum dots in tle previous chapters. These

f{tructures can be made by various synthesis routes such as molecular beam epitaxy and

,self-assembly. The energy states of electrons, phonons, and photons in such structures

are often different from those in their bulk counterparts. Many of the novel properties

bfthes" artificial structures originate from the different energy states and, consequently,

different densities ofstates. These artificial structures can be categorized into two groups.

bne imposes new boundary conditions, as in quantum wells and quantum dots, and the
'bther creates new periodicity, as in superlattices. We will briefly illustrate some examples
ih this section.

3.5.1 Quantum Wells, Wires, Dots, and Carbon Nanotubes

quantum well can be formed by sandwiching a thin film between two other materials

dA"dQ: -;] : sin? d0 dtp

vdEda

--rs,-"/,.t!' / 1i n' 1'\ |

For example, a thin layer of GaAs (typically < 200,4, can be sandwiched between
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Conduction

Vacuum Level

(GaAs)

Valence

Al,Ga,-*As GaAs Al*Gat-*A's

Figure 3.28 A quantum well can be

formed by sandwiching one material

(GaAs) between two materials

(AlxGar-rAs). The top figure shows the

band-edge alignment. The band-edge offset

provides the potential barrier to confine

electrons in the GaAs laYer'

AE,
z

z

i

I'l
ii

I

I

i

I

l',
I

l;'
I

l

I'|,
I

two AlrGal-"As layers, where the AlAs volume fraction t can be controlled to a

nigf, pr..irion betwlen O uni f . Both GaAs and AlAs are semiconductors' AlAs

iUi"Og-p 2.11 eY) and its alloy with GaAs, Al'Gal-"As' have larger bandgaps than

GaAs (bandgap f .+Z eV). Whi-t.fyp--*gt-":i4ls foryr-r'arr' iLtprfac"e' a g€neral rule fpf the

alisnment of the bands i, tt oi iii.-u*.uuil t"u"t puqt be the same. The energy required

li'#iir'e;ta;i"#i.# irr" .;;ouction band edge to ttre vaCuum levei, 'that is, the

.n"rgy"n..o.a to take an electron out of the c-onduction band to vacuum, is called

iii-'ii"..,* "tnrri ing"t" i.zsl, wtrictr is different for different materials' For the

o1;C;JrloJj,q.t"cu,-, As sandwich structure, the final band-edge alignment is

shown in figure 3.2g. A potenlial difference exists at the interface in both the conduction

band and the valence uuna, 
"at.a 

the band-edge offset. For electrons in the conduction

;il, ;t. conduction band-edge offset AE, provides the potential barrier to form a

quantum well. Similarly, the ialence band-edge offset provides a pote'ntial well for

holes. In chapter 2, we solved the energy levels for aone-dimensional qyi:t-T well' In

a realistic quantum well con$tructed oi a thin film, the electrons are not constrained in

thex_yplane(thefitmptanelandthepotentialbarrierisnotinfinitelyhigh.Hence,the
solution is more complicated and will not be pursued here (see exercise 2'12)' Instead'

we assume for simplicity un innnlt. potentialianier height in the z-direction. we then

canobtainthefollowing"n",gy_*uu*ectorrelationfromtheSchrddingerequation,

22 ^ h2rr2

I n&,,ky,n)- #ro:+ktr)+"'ffi (n:1,2,"''N) (3'62)

wn"r. i-ii the width of the quantum well and llr* the electron effective *11^ti-,1:

above relation, the" dispersion' r9fatio11 in.the ko anq ftv direct]:l: aigthe s9m9 3p' tn

the bulk material, but in the i-direction' the energy becomes discrete as given by the

"?;-ai;"tti;;al 
particle-in-a-box model presented in chapter 2'

Example 3.5 Quantum well density of states

For the energy dispersion relation given by eq' (3'62)' determine the corresponding

electron densitY of states.
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Solution: rne allowable wavevectors for k" and k, are

k,,k, - +2# @:0, 1,2,...) (E3.5.1)
NA

where a is the lattice constant. Thus, the area per state in the kr, fr, plane is (2n / L)2 .

We can rewrite eq. (3.62) as

h2P*,

2m*

where P,, : te + kl. Examining eq. (E3.5.2), we see that for energy E larger than
En : n2h2n2 /1Zm*d2) but smaller than E@+D, there exist z series of k , values
that can satisfy eq. (E3.5.2) because the value n in the last term can be any integer
between 1 and n, For each of these n series, the number of states between kry and
kry l- dkry is

N : No. of states - 
4nk*rdk. 

- 
Akxvdkxv 

/for each allowable series of k"r)(2n/L)z T \^\

where A : L2 is the area along the x-y plane. From eq. (E3.5.2) we get

h279: -=krrdkr, (for each allowable series of krr) (E3.5.3)

So the electron density of states per energy interval and per unit area of film for each
allowable ft", series is

Dr(E\- N :**
AdE trhz

E(kr,kr,n): ln2
liZtrz

Ttn*F
(E3.5.2)

(E3.5.4)

Foranenergystate E, < E < E6+r),thetotalnumberof statesis D(E) : nD1@).
The electron density ofstates for such a dispersion relation is a staircase, as illustrated
in figure E3.5.

EV

D(E)

n=2

n=1

bulk

n=3

n=2

n=1
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FrequencY (1012 rad/s)

Figure 3.29 (a) Phonon dispersion and (b) derrsity of states in quantum wells (Yang and

Chen,2000).

change can be seen experimentallY throu gh' for examPle, Raman

probes the phonons through the frequency shift of a photon that interacts

(Weisbuch and Vinter, 1991). Numerous studies have been devoted to

phonon confinement in quantum structures (Bannov et a1., 1995).

include the use ofphonon confinement to reduce thermal conductivitY

the thermoelectric energy conversion efficiency (Chen,200l).

The quantum effects for nanometer-scale wires (quantum wires) and

dots (quantum dots) are expected to be even stronger than in

the additional boundary conditions on the electron or Phonon

directions. A recent discovery is that of nanoscale tubular structures, particularly

nanotubes $rjima, 1991)' A carbon nanotube can be considered as the

atomic sheet (or several atomic sheets) of graPhite carbon (Dresselhaus et al',

Graphite has a close-packed hexagonal structuie, as shown in

between different laYers is through the van der Waals bond, which is weaker than

covalent bonds within each layer' If only one atomic laYer rolls uP, the

formed is called a single-walled carbon nanotube' If several laYers

formed is called multiwalled. DePending on the nanotube diameter and the

of the major crystallographic directions with the nanotube axis, the nanotube can be a

semiconductor or a metal, due to quantum size effects. The electron and phonon energy

states in carbon nanotubes are very different from those in their bulk materials, leading

to some sPecial ProPerties. The mechanical strength and thermal

tubes are exPected to be very high (Kim et al., 2001). Research is

various propertie.s and applications of carbon nanotubes (Dresselhaus et a1., 200i).

3.5.2 Artificial Periodic Structures

We have observed that the periodicity that naturally exists

crucial nrle in determining the electron and Phonon energY

are three dimensional, with a periodicity determined by the lattice

also create artificial periodic strucfirres, for example, bY repeatedlY growing a thin

of GaAs and a thin layer of AlAs on the same substate. In fact,

or
b
U)
oo

,l
i

I

rl
.t

I
:l

il,
I

t..'

i.
I

t.:
I

i.li
,i

i

I

i

I

ii
i:
l

t,
l:
I

t:
Irl
l.r

(b)

structures have been used widely in optical coatings, such as in the making of acoustic phonon dispersion relations in bulk Si (Yang and Chen, 2001). We can
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0.5
kaln

(b)

filters that consist of alternating layers of quarter-wavelength thin films
1965). An optical wave can be totally reflected when the wavelength matches

period thickness, as the Bragg condition in figure 3.10(b) and eq. (3.18) dictates.
discuss optical interference filters further in chapter 5. In an analogy.to the

interference filters, Esaki and Tsu (1970) proposed superlattices, which are
structures with the thickness of each layer less than the electron or phonon

film deposition techniques such as molecular beam epitaxy (Chang et al., 1973).
wave propagation and energy states in superlattices can be modeled using the

model, leading to drastically different electrical and optical properties
those of their constituent materials (Weisbuch and Vinter, 1991). Phonons can also

similar behavior, forming bandgaps and new energy states (Narayanamurti et al.,
Figure 3.30 shows an example of a model Si/Ge superlattice and the calculated
spectra for acoustic phonons in a model Si/Ge-like superlattice, together with

80
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Figure 3'31 Unit cell
'of a superlattice made of

two cubic crystals, being a

tetrahedron with a much

larger number of atoms

as the basis'

i see that, along the superlattice film plane' the

reciprocal lattice vector in the

lattice constant of the original
direction. It is the total thickness of one

in this direction. Thus the maximum width

r la.The superlattice clearly has very

materials. In the cross-plane direction,

at every kz: Tld in the Phonon
a one-dimensional Kronig-PenneY

phonons in bulk silicon becomes verY flat

corresponding Phonons in adjacent germanrum

the silicon laYer. Another waY to

unit iell of a Si/Ge superlattice is no

but a tetrahedron as shown in figure 3'31' It is a

hai more than one atom as the basis (at least one

However, we should remind

as theoreticallY Predicted using

lattice dynamics), the mean free

We will discuss this Point in more

Superlattice structures made

city only in one direction' BY

one can also make quantum wrre

periodicity in two or three directions.

The periodicitY in
branches, partiallY due to the

ual atoms and Potential barriers

This is not the case for optical waves (except

visible light usuallY has a quite

the crystal. The artificial oPtical

wavelength laYers create frequency ranges

that can comPletelY reflect all incident Photons. This phenomenon corresponds to obtained by adding impurities that have an energy level 'close to the conduction or

z=d

da = naa

ds = nga
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photon bandgap, similar to that in the Kronig-penney modei for electrons. By extending
such a concept to three dimensions to make three-dimensional periodic structures with
periods.comparabJeto optical wavelength, yablonovitch (19g6) propos.a*r..on.rpt or
three-dimensional photonic bandgap structures. These photoni" ..vrt"t, have become a
very active research field and have potential applications in lasers, telecommunication,
and optical coatings (Joannopoulos et al., 1995, 1997).

3.6 Summary of Chapter 3 .

The contents of this chapter are often covered, in a solid-state physics course, in at least

z=0
ihree individual chapters: crystal structure, electronic energy states, and phonon energy
States (Kiuel, 1996; AshcroftandMermin, 1976). This condensed chapterintroduces the

Unit cell ofB laYer
'terminology and often-used methodologies for the analysis of energy states in crystalline
,itructures.

The most important characteristic of crystals is their periodicity, which is described
by a lattice. Real crystals are obtained by attaching a basis to each lattice poiht. The basis

period is still a and thus the one atom or a cluster of atoms. Lattices are described by the primitive

firsttsrillouin zone isn la.Inrhe cross-plane direction,. A primitive unit cell contains one lattice point, but a conventional unit

bulk lattice no longer represbnts the true periodicity in lattice point. One way to construct a primitive unit cell
period, d, that rePresents the lattfce periodicitY Wigner-Seitz cell. In three-dimensional space, a total of

of the first Brillouin zone is n/d rather than ,14 lattice types exists. The Miller index method is commonly used to denote crystal

different dispersion relations to those of the ,iilanes and directions.

for example, a small gaP, called a mlnlgap, forms l,; A lattice is periodic in real space, and we often express a periodic function in
spectrum, similar to the electronic gaP formation in terms of its Fourier transformation. The Fourier conjugate of real space is called the

model. The disPersion of high-frequencY acoustic ieciprocal space. The primitive lattice vectors in reciprocal space can be calculated from
inside a suPerlattice because there are no the primitive lattice vectors'in real space. Diffraction experiments provide an image of

layers; thesgPhonons are cOnf,ned inside reciprocal space. A Wigner-Seitz cell in reciprocal space is called the first Brillouin
think of these confined "acoustic" phonons is that Zone. Later, we express the energy dispersion of electrons and phonons in the frist

longer a cube as in bulk silicon or germanium, zone.

new material with a new unit cell

silicon and one germanium

ourselves that to form the new phonon or electron spectra'

idealized models (such as Kronig-PenneY

path must be much longer than one

detail in chaPter 5'

of alternating laYers of thin films have a*iflcial

periodicallY arranging quantum wiies arld quantum

and quantum dot superlattices that have artificial

naturally existing crystals creates electronic bandgaPs and

fact that electrons and phonons can sample andfeel

and thus exPerience diffraction and interference

X-rays) in naturallY existing crYstals,
ln a semiconductor, the motion drf electrons in the valence band can be describedlong wavelength and thus averages over a large volume
the motion of equivalent positive charges, called holes, that occupy the empty statesinterference filters that are made of alternating
the band. Semiconductors can be intrinsic or extrinsic. Extrinsic semiconductors(called stoP bands) along certain
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in nanotechnologY.

3.7 Nomenclature for ChaPter 3

h
K

Planck constant, J s

Planck constant divided by 22, J s

magnitude of wavevector, m-l
wavevector, m-l
spring constant between atoms,

Y 6-r ; quantity defined by eq. (3.24)

. Z-point of the Brillouin zone of an
fcc lattice, [111] direction; length
of crystal, m
mass, kg
effective mass tensor, kg
effective mass, kg
integer; local electron

_a
densrty, m-'
total number of atoms in the crystal;
number of states

' constant in eq. (3.32)

charge per ion, C
quantity defined by eq. (3.24)
separation between atoms
nearest neighbor separation, m

, atomposition
translational vector
integer

: electron or photon amplitude
at detector
time, s

period in time, s

atom displacement from
its equilibrium position
interatomic potential, J
velocity, m i-l

'volume of primitive unit cell, m3;
volume of crystal
atom coordinate
X-point of fcc reciprocal lattice,
[00] direction
Madelung constant for
jonic crystals
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center of the first Brillouin zone
for an fcc lattice
delta function, eq. (3. 15)
band edge offset, J
parameter in Lennard-Jones
potential, J
electrical permittivity in vacuum,
g2 *-2 11-l
parameter in Born-Meyer repulsive
potential, m, eq. (3.4)
polar angle
Boltzmann constant, J K-l
wavelength, m
frequency of phonons
and photons, Hz
density, kgm-3
parameter in Lennard-Jones
potential, m
azimuthal angle
wavefunction
angular frequency, rad.Hz
solid angle, srad
Miller index of a crystal plane
Miller index for identical :

crystal planes

vector along
a crystallographic direction

Subscripts

attractive
conduction band
Debye
Fermi level
bandgap
between atom i and atom j
repulsive
Cartesian coordinate direction
valence band

Superscript

complex conjugate

e
KB

L
u

4 lattice constant or length in

fieure 3.11' m

a pii*itiu" or conventional laffice

vector, m ,
A constant; area' m-

b length in figure 3'1J, m

L ,".ipto.ut ipace primitive lattice

vector' m '

B constant
d thickness of quantum well or period of

suPerlattice, m

D density of states per unitvllume' m-3

E energY,I
E. conductionband edge, J

]' arbitrary function, periodic in time

or space
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3.9 Exercises

3.1 Number of at:oms. How many silicon atoms are there in a cube of 100

1000 A, and I pm?
of crystals. The lattice constants of germanium

respectively. Ge has a diamond structure and GaAs has a

, Majumdar,
Muttiwalled

2012-2016.

structure. Calculate their density

M.S.,
Supeirlattices

Calculations for

'Ab Initio Calculation

354, pp.5G58.

Measurements
5502114.

vol. I

Wiegmann, W., I

and GaAs are 5.66 A

" 3.1
.'!':'
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3.3 unit cell in real and reciprocal space. A body-centered cubic lattice has the
fbllowing primitive translation vector:

rl
1

at : )a(*.+9' +2): az : 
)a6. -g +z): a3 : 

)agr+j, - i)
(a) Construct the Wigner-Seitz cell in real space.

, jb) Find,out the corresponding primitive translation vectorin the reciprocal space
and prove that the reciprocal lattice is an fcc structure

(c) Sketch the wigner-Seitz cell in the reciprocal space, that is, the first
Brillouin zone. -

" z.+ irn oi-tin", potential. The varues of the Lennard-Jones potential for noble
gas.cryst4. _*" given in table 3.1..For argon crystal,t (a) Calculate the interatomic distan'ce.

(b) Calculate the en_ergy at the minimum (called cohesive energy).
(c) calculare the effective spring constant between two argon at,oms.

3.5 Miller index. rndex the following planes in a silicon crystal: (100), (ll0),
(t I l), (l2l).
x-ray diffraction. In an X-ray diffraction experiment a, the angle formed between
the incident ray and the detector (29) is 90o and first-order diffraction peaks are
observed with the X-ray wavelength at I A. Determine the distance of the crystal
planes in this specific direction.
Kronig-Penney model. For P = 5, find out possible solutions for Ka in
e)q. Q3z). Convert the solution into a relationirip between wavevector and
energy and plot the solution in

(a) extended zone representation,

as shown in figure P3.8. The masses of the two atoms are different but the spacing
and the spring constant between them are the same. Derive the followinj given
expression for the phonon dispersion in this diatomic lattice cha1n. schematicalty
draw the phonon dispersion you obtained

,,: x (at!!z)* 
1., 

(ry#), #;*, (|*)]','
where K is the spring constant and ft the wavevector with the following values

.2r .4n T
^ : =;;, =;;,..., :

tva lYa a

and N is the total number of lattice points in the chain.
3,9 Electron density of states. For an eliiptical electronic band given by eq, (3.37),

derive an expression for the electron density of states.

l+- u -->| V-tlz >l

Figure P3.8 Figure for problem 3.g.
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where l, n can take integer values I,2, . . ' , Derive an

3.11 Electron density of states inside quantum dots

of states of a cubic quantum dot with side length 6 = 20

function of frequency.
3.1 5 Size effects on density of states. The density

geometries, the energy separations between
number of states at each energy level can be

valid. As an example, consider a cubic cavity of (2

3.1 0 Electron density o;f states inside quantum wires ' The electron energy

in an infinite potential barrier quantum wire can be expressed as

expression for the

density of states and plot this'expression for L, - Lz: 50 A.
Determine the electron

A, assuming that

electron effective mass equals the free electron mass.

3J2 Phonon density of states. Assuming that phonons of a three-dimensional

obey the following isotropic dispersion relation,

4

Statistica I Therm odyna m ics
and Thermal Energy Storage

. quatrtum mechanics principles covered in the previous two chapters give the
The number of allowable states in fypical macroscopic

states,

3J3 Debye approxirnation Derive an expression for sound velocity from eq.

Calculate the sound velocity for a monatornic fcc crystal along (100) and (11

directions, using this simplified expression. Assume that the mass of the atom

9.32 xl0-23 kg, the lattice constant of the conventional fcc unit cell is 5.54

10-10 m, and the spring constant is 7600 Nm-1.
3.1 4 Transverse and longitudinal phonons. Consider three separate acoustic

in a three-dimensional isotropic medium with an effective lattice

of 2.5 ,A,. The dispersion for each branch is aL : uLk, @t : utk (degenerate

For utr : 8000 ms-l and us : 5000 ms-l, plot the density of states as

of states expressions we derived
valid when the separations between states are small and the number of states

large, such that we can calculate the number of states by eq. (3.50). In
different states can be large and

small, so

many states are allowed to exist inside the cavity for electromagnetic waves

lE t kal, :2,,1 ; lrr" Tl
where a is the lattice constant, derive an expression for the phonon density

a wavelength in the range of 0.5-1 pm, using the following two methods:
(a) by finding out how many sets of (k', ftr, ft.) are allowed in this cavity that

is usually very l?rge, and at any instant, the
Although our mathematical treatments in the previous two chapters were basedth@t the energy states and the wavefunc-

of the interactions molecules, electrons, and phonons)
matter. we assumed a harmonic potential between atoms to obtain the

its allowable quantum states. The

thermodynamics, ternlg{glgtgtut€rsjnto the picture of

matter can be at any one of these

into the given wavelength range;
(b) by integrating eq. (3.59) over the given wavelength range.

statistical

123



124 NANOSCALE ENERCYTRANSPORTAND 
CONVEF \

nanostructures, using what we learned in prwious chapters

degOneracy, and the density of states'

4.1 Ensembles and Statistical Distribution Functions

a system

ata flxed rather
over a

period system. fundamental

necessafy for this hYPothesis to be valid is an ongorng

et a1., 1998). Our analYsis will assume that all systems are ergodic.
each has a

followi4g, we will discuss three ensembles:
canonical, and

canonical ensembles

4.1.1 Microca nonical Ensemble and EntroPY

Unlike classical thermodYnamics, which comPletelY neglects themicroscoPic

statistical mechanics is that an isolated

O is the total numberof accessible quantum states, the probability

of each accessible quantum state, denoted by s, being samPled is

P(s) : l/A

quantum state is known, we can construct a

quantity (X) of a macroscoPic system. We

(such as temperature, pressure) for each

the average according to

(x) : I P(s)x(s) (4.2)

s=l
a

Note that the summation is over all accessible quantum states.

Because each accessible quantum state is a state of the system that satisfies the

rnacroscopic constraints and each one has equal probability to be sampled, we are

bffectively dealing with a collection of S2 stationary systems, as shown in figure 4.1

systems are identical from the macroscopic points of view; that is, they have the

U,V, and N and are all isolated from their surroundings. This collection of Q

systems is called an ensemble
m a mrcro-

Later, we canonical and grand canonical ensembles

of each system in such ensembles on the basis of results

obtained from the microcanonical ensemble. Equation (4.2) means that each of

stationary systems in the ensemble is sampled once in the computing of the aver-

Such an average is called the ensemble average. For a microcanonical ensemble,

: 1/Q, thus

sl

, (X):fxt'l/o

STATISTICAL THERMODYNAMICS AND THERMAL ENERCY STORACE "t25

s=1

idea ofequal probability for each accessible quantum state rn an isolated system

seem umeasonable for some readers. For example, for a system of I023 particles,

accessible quantum state might be that one particle has energy U and the rest have

(4.1)

energy. This distribution of energy among N particles seems to be a quite unlikelY


