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potential barﬁér around the box, (b) the allowabie energy levels for D = 50 A,
and (c) the degeneracy of the first four energy levels.
2.15 Wave function in a one-dimensional pozem:a.f well. P}ot the e
electron distribution in a one-dimensional infinite potential well forn =1, 2, 3.
2.16 Degeneracy of electron energy levels ;n a hydrogen atom. Prove that the electron
degeneracy in a hydrogen atom is 2n°. .
2.17 Translational energy level. A 10 cm?® box contains a Hy molec:l].llc at 3OQ K.
' (a) Estimate the average translational energy of the Hy molecu.e. X
(b) How do the first few translational energy levels compare with i qT ?
(¢) Can you think about a way to count the degeneracy of the translational energy

levels corresponding to this average energy?

most probéble

3

Energy States in Solids

The previous chapter introduced the energy levels in simple potential fields, such as
quantum wells, harmonic oscillators, atoms, and molecules. In this chapter, we will

discuss gnergy levels in solids. We focus our discussion on Single-ceystals, which are

the simplest form of solids because the + As we will see,

by discussing crystal structures, including lattices and the potentials binding the atoms
into a crystal. Since atoms in solids are packed closely, the electron.wavefunctions
Sbdndividual atoms overlapand form new wavefunctions
electron energy levels. The interatomic forces bond: nuclei i« I
of the atoms inside the crystal js 2d. The collective atomi

decomposed into normal modes extending over the rystal and the basic energy quanum
of each normal Efo&éfsmg laphonon, in the same way of that the basic energy quantum

e AT

#J of ap glectromagnetic.mode.is.called.a, photon. Each electron and phonon wavefunction

" is characterized by a frequency (or energy) and a wavevector. The relationship between

the energy and the wavevector is called, the dispession.selati on, which plays a central
role in determining the properties of the crystal. We limit mathematical derivations to
the dispersion relations of electrons and phonons in one-dimensional periodic structures
and explain the energy levels in real crystals without a more detailed mathematical
derivation, because the dispersion relation in a real crystal can be appreciated on the
basis of a sound understanding of the behavior of a one-dimensional periodic system.
The energy levels in crystals are highly degenerate A very s ol that takes into™ |

= = fo 2 5 = =LY MatAl 1001 Lnal [akes ‘
account the degeneracy of the gnergy states is ihe density of states, which will be used _\-1-

Trepeatedly throughout the book and should be mastered.
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3.1 Crystal Structure

e-dimensional periodic arrangement of atoms. To descr_ibe a
riodic array of mathematical points that rel?hcate
rystal. Every point in the lattice is identical to
2 basis consisting of one or several atoms (or a

A perfectbulk crystal is a thre
crystal, we use an atomless lattice—a pe
the inherent periodicity of the actual ¢
other points. To form an actual crystal.‘ ;
molecule) is attached to each lattice point, 1.¢.

-@_ﬁstal=lattice - basis 3.1

five to the lattice point is not important, as long as

the relative position between the basis and the lattice poi_m is the sa.rne_for all the 'latltlcc.
points. Many crystals have the same lattice structure; in fact, tben?._xs: 0! ahh.mmd_
number of passible = tvpck Thus. we will first discuss the description of lattices in

of reciprocal lattice, which is the
g between atoms in real crystals

The exact position of the basis rela

realsp h an introduction of the con‘cep![
Fourier transform of the real space lattice. The bindin
will then be discussed.

3.1.1 Description of Lattices in Real Space '

Consider a two-dimensional lattice as shown in ﬁgur.e 3.1. From a mathematical 1;0;1(
of view, the location of each a point can be described by a vector. Because of the

iodi ice poi choose a basic set of vectors, called:
periodic arrangerr.lent of latace points, we can ’ T

the-p imi. g _Latiic: eClo

ttice. v A (0]
‘dimensional lattice, aj, a3, @3 are primiti
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© Unit Cell 4
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ces of primitive lattice vectors aj and ap and
igner-Seitz primitive unit cell is one way to
are not a set of primitive lattice vectors
owever, often used due to its regular

Figure 3.1 A two-dimensional lattice. D:;Eferenz choil
primitive unit cells (gray areas) are possible. The: W ;
uniquely construct a primitive unit cell. Vectors ay and a
and the shaded area is not a primitive unit cell. This area 1s, h
shape and is called a conventional unit cell.

A Jopics (Ruck % Fualboe colh
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reach all other lattice points by a proper choice of integers through the following

Constusien Resttiarou ou e su

R=ma trom eyl (amanscoverallintegers) - (3.2)
The magnitudes of aj, az, and a3 are called the lattice constants. A lattice constructed
according to eq. (3.2) is often called a Bravais lattice. Primitive lattice yectors.are not
unigue: We have drawn two sets of primitive lattice vectors in figure 3.1 with primitive
unit vectors denoted by a; and a;. The other set of vectors, a’l' and aj, are not primitive
lattice vectors because we cannot use them to construct all other lattice points by a
two-dimensional version of eq. (3.2). For example, we cannot reach point 1 through any
linear integer combination of aj and a. '

Aprimitiveunitcellisthe parallelepiped defined by the primitive lattice vectors. There:
isonly one lattice point (equivalently speaki imitive unit cell: For example, each
of the four lattice points in the two parallelograms formed by the two sets of primitive
lattice vectors in figure 3.1 is shared by four unit cells and thus the number of equivalent
lattice points in each parallelogram is one. These are thus primitive unit cells. On the
other hand, the shaded rectangle formed by él’l and a), is not a primitive unit cell because
there are two lattice points in such a rectangle: the center point plus the four corners, each
of the latter being shared by four cells. Because the choice of primitive lattice vectors
is not unique, there can be different ways to draw a primitive unit cell, as shown by the
two exarnples in figure 3.1. One method to construct a unit cell uniquely is the Wigner—

Seitz cell (see figure 3.1), which is constructed by connecting all the nei%hboring %c_)ims
surrounding an arbitrary lattice point (as shown by the solid lines in figure 3.1) and
drawing the bisecting plane (shown by dashed lines in the figure) perpendicular to each
connection line, The smallest space formed by all the bisecting planes is a Wigner—Seitz
cell, as indicated in the figure.

Sometimes, it is more convenient to describe a lattice by the conventional unit cell.
For example, in figure 3.1, the rectangle formed by a) and a}, is more convenient than
the parallelogram formed by the primitive lattice vectors. This unit cell has two lattice
points and is called a conventional unit cell. The crystal can also be constructed by
repeating such a cell.

A general unit cell in the three-dimensional space is designated by three laitice

vectors and the three angles formed between them. In the most general case, these

three lattice vectors are of different lengths and the three angles are all oblique; as
shown in figure 3.2(a). This lattice is called a triclinic lattice and does not have much
symmetry. The symmetry of a lattice is often characterized by the symmetry operatioris,
which include rotation of the unit cell around a fixed lattice point, reflection of the unit
cell along a specific plane, and inversion with r t

attce poiat. A fundamental

. Tequirement on the lattice is that one can fill the entire space by placing a primitive
- unit cell at every lattice point. This requirement puts a limitation on the symmetric
. operations of a lattice. For example, the allowable rotational symmetry operations are

2, 7, 2w/3, 27/4, and 27/6. No lattice, however, can have 27/7 or 27/5 rotational
symmetry.* Given these conditions, it turns out that there are 13 other types of lattice
that have special symmetry operations on top of the = and 27 rotational symmetry of

. *Some quasicrystals can have five-fold symmetry patterns but they do not satisfy the definition of a crystal
discussed in this section (Kittel, 1996).

s e rien
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Figure 3.2 Fourteen Bravais lattices and the associated seven systems.

a triclinic lattice, so that there are in lotal_l_ﬂ-mo;‘_ammc These 14 latu:g
can be further grouped into seven types.of point symmetry, operations (seven cry
systems) or operations around a fixed lattice - point (such as rotation and inversion), as
shown in EEure 3.2. For example, in the cubic system, there are three types of Bravafs
lattices, the simple cubic (sc), the body-centered cubic (bc.c), or Ih.e face—ccnte‘red cubi‘c
(fcc). The cube is a primitive unit cell only for the sc lattice and is a conventional unit
cell for the bee and fec lattices. e ) s
Certain crystal planes inside a lattice are t_dentlca] The_se planes are paralle] to e =
other and equally spaced. A common cony;guog_fqr _u_adex:ggghi Er;g:tal gl_ang_s‘_‘_anql tw‘!
high symmetry directions.is in terms of the Miller indices. The Miller indices of grystal
planes, represented by a set of intggfr's in parem.he_s;s_(k?g_l). are oblained in accordance
with the following steps:

1. Find the intercepts of the crystal plane with the axes formed by .the lattice vectors
ap, ap, a3 in terms of the lattice constants. The origin of the lattice vec‘tors can be
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Figure 3.3 Two identical
planes with Miller indices
(364) in a crystal.

at any lattice point. One can choose any crystal plane that is convenient to use.
For example, in figure 3.3 we have two crystallographically identical planes; one
intercepts the axis at 0.8a;, 0.4a3, 0.6as, and the other at 4a1, 2a;, 3as.

2. Take the reciprocal of the intercepts and seduce these reciprocals to. the three
smallest integers that have the same ratio as the original set. The result is enclosed
in parentheses (hkl) and this set of numbers is called the Miller indices of the plane.
The example in figure 3.3 yields

(1/0.8, 1/0.4, 5/3) (for inner plane) or
(1/4,1/2,1/3) (for outer plane) — (364),

If the plane intersects at the negative side of the chosen primitive lattice vector, a line
is placed above the number. For example, the six square faces of a cubic unit cell
[figure 3.2(g)] are (100), (010), (001), (TOO), (010), (001). We can use the sign {100}
to denote all the six equivalent planes. The direction index in a crystal is denoted by
a set of smallest integers [uvw] proportional to the unit vector in the desired direction.
All equivalent directions can be denoted by (uvw). Based on.these definitions, one can
prove that the (ki) plane is perpendicular to the [/k] direction.

Crystal planes and directions are often determined by using X-rays or through
transmission electron microscopy. Semiconductor wafers are sold with the major crystal-
lographic directions and dopant types marked by the wafer flats. A wafer typically has a
primary flat representing a crystal plane and a secondary flat that is positioned to denote

the'dopant type and the surface crystallographic direction, as shown in figure 3.4 for
a4 in. silicon wafer.

3.1.2 Real Crystals

By attaching a basis, which can be one or several atoms or a molecule, to each lattice
‘point, real crystals are formed. For example, silicon has an fcc structure and the basis is
‘made of two silicon atoms. If we anchor one atom at the fec lattice point, for example



82 NANOSCALE ENERGY TRANSPORT AND CONVERSIC*

n-type (111)

n-type (100)

primary flat
{110) plane

primary flat
(110) plane

Figure 3.4 Semiconductor wafers are sold with major crystallographic indices and dopant type
denoted by primary and secondary flats. These are common notations for 4 in. wafers. 4

at (0, 0, 0), the other silicon atom is then at (a/4, a/4, a/4) as shown in figure 3.5(a).
In a conventional fcc unit cell, there are four lattice points and eight silicon atoms. In
a primitive unit cell, there are two silicon atoms. The silicon crystal structure is called
diamond structure, which is shared by several other crystals such as germanium and
diamond. The zinc blende structure [Figure 3.5(b)], such as that of gallium arsenide
(GaAs), is similar to the diamond structure but the basis is made of two different
atoms, one Ga and one As atom for GaAs. If we take the Ga atom at (0,0,0), then
. the As atom is at (a/4,a/4,a /4). Since the Ga and the As atoms are different from
one another, the zinc blende crystal structure has fewer symmetry operations than
the diamond structure. Graphite has a close-packed hexagonal structure, as shown in

figure 3.5(c).

Example 3.1 Density of Si crystals

Silicon is an fcc lattice-with a lattice constant of 5.43 A and two atoms per lattice
site. Determine the density of Si crystals. ’ :

Solution: An fec lattice has four lattice points. Since there are two Si atoms at
each lattice point, there is a total of eight Si atoms per conventional fcc cell. Each
atom weighs 28 x 1.67 x 10~27 kg, where 28 is the number of protons and neutrons,

(b) Zinc blende i () Hexagonal Close-packed (ilcp)
Graphite, He, Mg, Zn, Co, ...

(a) Diamond
C, 8i, Ge, ... ZnS, GaAs, GaP, 8iC, ...

Figure 3.5 Three-types of common crystal structure: (a) diamond, (b) zinc blende, (c) close-
packed hexagonal.
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and 1.67 x 1027 kg is the weight of a proton or neutron. The density of Si érystal
is thus

8% 28x 1.67x 107%'kg
(5.43 x 10710 m)3

=2.34 x 10° vkgm‘_3

Real crystals also at which the periodicity of the crystal is disturbed. The
defects can be divided into the following three types: points, line_s, and gianes. Examples
of point defects are vacancies, where the atoms at the lattice points do nhc';t exist, and
impurities, where the original atoms are substituted by different atoms. Another form of
a point defect is an interstitial defect, where an additional atom is inserted in the space
that does not belong to any allowed atomic site in the original lattice. Examples of line
defects are dislocations. The two simplest types of dislocation are the edge dislocation
and screw dislocation, as shown in figures 3.6(a) and (b). The edge dislocation can
be constructed by inserting an extra plane of atoms in the upper half of the crystal.
The screw dislocation can be thought of as the result of cutting the crystal partway
through lwith a knife and shearing it parallel to the edge of the cut by one lattice vector.
Dislocations can only form loops or be terminated at the surfaces (or interfaces), as
is vortex in i The number of dislocations is measured i i
density (dislocations/em?), which is the number of disTocation lines that intersect a unit
area in the crystal. 'I'\L{E_ical_ values for the dislocation density are 108 cm—2, and they
vary significantly depending on how the materials are made. Because the iiimw_g
regions are highly stressed, it takes a relatively small disturbance (shear stress) tomoye
the location of the dislocation to the next l_atﬁcé" plane m&;&p} direcfit)gs‘ drawn in
Figure 3.6. Thus crystals with dislocations have awmw But
this is not the whole story. IMxﬂwmgaﬂs. because there are many defects
,afld disl?cations along the path of the dislocation motion, the work needed to move these
dislocations ov er other defects is much higher. Thus, poorly prepared cr it
many, dislocations,can be harder than relatively good but yet not Erfect (because the
existence of dislocations) crystals. Examples of planar defects are the grain boundaries,

small crystalline regions.inside a crystal, or polycrystals.

® ®

Figure. 3.6 Illustrations of (a) edge and (b) screw dislocations. The arrows mark the direction
of motion of the dislocation.
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reaches a minuoum, as required by the second law of thermodynamics for a stable
system. In eq. 37,0 = (B/A)I/Gand £ = Azj'(leJ. and the factor of one-half is there
because the potential is shared between two atoms and the summation double-counts
the p%telntial. Values of Lennard—Jones parameters for noble-gas crystals are given in
table 3.1.

3.1.3 Crystal Bonding Potential

What holds the atoms together in a crystal? Fundamentally, it is the electron—electron
and electron-nucleus interactions between atoms that hold them together. We touched
on the topic of interatomic potential in chapter 1 and will now give a more detailed
discussion, focusing on solids. More discussion on the interatomic potential will be
given in chapter 10, for molecular. dynamic simulations.

The force interaction between atoms always consists of a long-range attractive force
and a short-range repulsive force: The short-range repulsive force is effective, due to the

Table 3.1 Lennard-Jones potential parameters for noble-gas crystals

Pauli exclusion principle, when the inner-shell electrons or the nuclei of the atoms begin A Argon Krypton Xenon
to overlap. Two often-used empirical expressions for the repulsive potential between the " Crystal structure foc fec fec fec
- K - - -— - = - Cl
atoms separated by a distance r are Lattice constant (4) 4.46 5.31 ! 5.64 6.13
E 610720 1) 0.050 0.167 0.225 0.320
Y £ V) 0.031 0.0104 0.014 '
' Ugr(r) = —=(LLennard-Jones 3.3 s 01 0.0200
’R( )=7 442:5?( o rEs) (-3 oA 2.74 3.40 3.65 3.98

arid " Source: Ashcroft and Mermin, 1976.
| Ur(r) = Upe™"/* Bom-Mayer) (3.4)

{
— i 1§ P

Example 3.2 Lattice constant

Determine the lattice constant of an fcc crystal described by the Lennard—Jones

where B, ¢, and Up are empirical constants, determined from experimental data, such as
i potential in terms of o in eq. (3.7).

| the interatomic spacing and the binding energy. The differences between yarious types

i of crystals; however, are mainly due to the long-range atigactive interac tion, which will

{3 be discussed below.

i @ Molecular crystals are characterized by the dipole—dipole mW
An isolated atom is not polarized, but, when another atom is close by, the electrical field
of electrons from the neighboring atom distorts the positions of the electrons and the
nucleus of the current atom, creating an induced dipole. TEE.“E‘EPEYE yomalm;gn

the induced dipole of two atomms is given by

Combining this attractive potential (van der Waals potential) with the Lennard—Jones
potential for the repulsive force, we obtain the Lennard—Jones interaction potential

between a pair of atoms i and j in a crystal as

Solutiqn: We assume that the nearest neighbor distance is R. We first compute the
potential energy for any one atom i interacting with the rest of the atoms in the
crystal. The total energy of the crystal with N atoms is thus N/2 times this energy.
From eq. (3.7), we have ‘

(4e)N o \? o \8
Ut = P
fot > Ej (( Rpij) ( Rp,-,~> ) (E3.2.1)

where p;; is the interatomic distance in terms of the neighbor distance R. For an fcc
crystal, we can deduce that

e e g mres

T e

(3.5)

. —12 —
Z Pyo=12.13188 ) p;S =14.45392 (B3.2.2)
i i

B A :
Uyj = ? - ;‘E (3.6) The lattice constant is the point when Uy is minimum. Thus,

e e s

I
i This potential is most appropriate for crystals of inert atoms (such as argon atoms which [d Utat] — oNel12x 12.13 a2 o®
A form a crystal at low temperatures) that have a neutral, spherically symmetric charge. dR |p_g, ) £ R_CIIS —6x 1445? =0 (E3.2.3)
TE'rJ i Such_a potential, however, can also be used to describe the interactions between similar ] 0
IR atoms or molecules in liquidus or gaseous phases. A crystal structure is stable when the which leads to
| total potential energy of the system '
'J Ro/o =1.09 (E3.2.4)

e

The observed values for Ne, Ar, Kr, Xe are Ro/o = 1.14,1.11, 1.10, 1.09, very
: close to the calculation. : ,
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_the atoms. Iq wiis case we say the electrons are delocalized and can wander throughout
the cry.stal;. in other words, they become free electrons. Later, we will see how the
delocalization of electrons can be explained by solving the Schrédinger equation

In ¢ S the single valence electron in the sodium atom
moves to the chlorine atom so that both Na* and CI~ have closed electron shells

but, meanwhile, become charged. he Coulomb. potential.among, e JONS e
= major attractiye force. Lhe potential energy of any ion i in the presence of other ions

[he ma

3.1.4 Reciprocal Lattice

+q2 eatl | ) ]
Uig= E =—— (3-8) We know that any periodic function can be expanded as.a.Fouries.sexi
W Lt A egrif 4mepro (i - e ) series. For example,
- J J ;f;oﬁ:rdszf:sd:: t function f(¢) is periodic with a period of T, it can be expanded into
where g is the charge per ion, £o the dielectric permittivity of free space, and ro the =3 : y
nearest-neighbor separation. The parameter o is called the Madelung constant and is £ = Z (a G (270 on
related to the crystal structure. This attractive potential, combined with an appropriate pep " T t ) + bn cos (—T—t))
repulsive potential, constitutes the total potential energy in ionic crystals. 4 0 ‘ (3.9)
Covalent honds are formed when electrons from neighboring atoms share common g = Z (a e 4+ b gminer)
rystals. Biological -3 n=—co

orbitals, rather than being attached to individual ions as in ionic ¢
molecules are often formed through covalent bonding. Many inorganic systems are also
covalently bonded, suchas the Hz molecule. The electron in each hydrogen atomofanHa
molecule shares a common orbital (one spin-up and the other spin down) with the other 3
irectional, In the case of the

electron in the other H atom. The covalent bond is strongly QUECHION

H, molecule, the bond is oriented along the line of the two nuclei. Diamond, silicon, and

germanium are all covalent crystals. Each atom has four electrons in the outer shell and

forms a tetrahedral system of covalent bonds with four neighboring atoms, as indicated
in figure 3.5(a). In certain crystals, such as GaAs, both covalent and ionic bonding are
important. Fundamentally, the covalent bonc ine force is also due o charge i

However, unlike the van der Waals force in molecular crystals or the el

where a, and b, are the coefficients of the Fourier series and a;, and &, in the second
step can be obtained by expressing sine and cosine functions ag complnex exponential
fup.ctlc?n.s. The angular frequency w = 2r/T is the Fourier conjugate of the temporal
Pgnodlmty such that ¢/ = 1, which ensures that f(¢) is periodic for every A P_ ;
thatis, £ +T) = 0. I
S In a crystal, the' atoms are periodic in space and, consequently, we expect that some
: qtom—relat_ed functions are periodic. The simplest example is the potential energy, which
§{1ou1d ‘have a periodicity comresponding to the unit cell. Let’s first considgl)-(’a
_dimensional lattice, with a lattice constant of a. A spatial-dependent function togn;i_

with a periodicity a, f (x) = f(x +a), can be similarly expanded into a Fourier serics,

M Ty e

in ionic crystals, iLi ifficult to consiru mple expressions 10T ¢ als.

Empirical potentials have been developed, such as the Stillinger— eber potential for 00 . .

silicon (Stillinger and Weber, 1985). Expressions for various empirical potentials will :_ fxy= Z (a,’le’"kxx +b) gTinkxxy (3.10)
n=-—oco

be presented in chapter 10.

In covalent bonds, electrons are preferentially concentrated in regions connecting the 4
nuclei, leaving some regions in the crystal with low charge concentration, as illustrated . 2
in figure 3.7(a). Metals and their associated metallic bonds can be considered an extreme
case of covalent bonds, in which the bonds begin to overlap and all regions of the crystal
become filled up with charges [figure 3.7(b)]. In the case of total filling of the empty
space, it becomes impossible to tell which electron belongs to which atom. One can
imagine the entire crystal as one big molecule with the electrons shared amongst all

: g?:e thegafg}ecr%&.ewa»&@aiwm to, spatial, periodicity.a
. Using eq. (3.10), one can easily show that f(x) re eats for every Ax = a; that is,
f(x s E. f(x) rep or every Ax = a; that is,
: ) The above example is for a one-dimensional lattice. But crystals are three dimen-
. §10na1.‘ .How can v.ve exp.and a function that is periodic over the three-dimensional
L crystal into a Fourier series? We will use the charge distribution in the crystal, n(r)

Zs( an t;i(ample. It shoulq be 1nva.riant with any translational lattice vector R; t,hat is’
15 r + ) = ngr). We will first give the following answer and then show that the giveI;
Fourier expansion indeed satisfies the required periodicity,

n@) =) nge™® (3.11)
G
-where G and the inverse transformation are given by
G G = m1b1 + mabj + m3bs (m1, ma, m3 are integers) (3.12)
. 3 3 1 ireG
Figure 3.7 Distribution of electrons (gray area) in (a) acovalent bonding crystal and (b) ametallic 8 : M LA 31
unit cell

bonding crystal (after Asheroft and Mermin, 1970).
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and (by, by, b3) are conjugated to the primitive lattice vectors (ai, a2, a3) through

= x a)/V (3.14)
by = 2n(az x a3)/V, 13_2_= 2n(ai3 x a1)/V,bs 27_r‘(3“1 12)/

: e primiti i i . One can
where V = a; (a3 x a3) is the volume of the primitive unit cell in real space

easily prove the following relations,

{1 =y 3.15)
aiobj=2n8ij Whereaij=[0 iy (

thcvabove definitions, we show now that n(r)isindeed

i s r delta. With :
S e ¢e vector in the real space R(= nia; +na -+n3asz),

invariant with any translational latti
where ny, ny, and n3 are integers:
i ] iReG
n(r +R) = ZnGel(H'R)"G - ZnGelroG+t o
i nGeir-G-l—l'ZJ‘r(n]m1+n2m2+n3m3) = Z nGelroG - n(r)

G
G

We used eq. (3.15) in the third step and the fact that m; and n; are integers in the fourth
step. Thus we see that the new set of vectors mtroﬂclluce‘d;i@ }cél?z :
=2 ing Fourier conjugate to the real space.fat a2
m~, is the corresponding conjugate o't pace 12 .
We can use. (by, bo; ba)-and-€qe{3-12).10,CONSIUCL A NEW lﬁiucg_,gwmm_ cal
latti i : i ice.yector. Previous definitions on real space lattices,
attice ‘

such as unit cells and the Wigner-Seitz print;iti;e u§1t'c:;;iu? ;gz?ltlg;;ﬁ;:;z‘l;t; ;s:s;l;
5 % : : ace is the Founer o te Of the red} spatt. :
ge;l(il]-?:nill g)i%%ﬁ: ;r:err:gfr?uarlui%eﬂofan fcc lattice inreal space andits co_:;r:s;:-;);?tl;ge
reciprocal space, based on the Wigner—Seitz consu‘uct‘lon. The Whic;,; < primitve
unit_cellin reciprocal space,is also called the first Brillouin mncl e
extensively later to represent the electron and phorion energy ievc sin sbe m%mﬁar 4
the representation of crystal properties in the reciprocal lattice :1;3;“ s

some readers, they undoubtedly have seen the spectrum represen

()

Figure 3.8 Convention
(a) in real space, (b) in reciprocal space.

by), whichhasaunitol,

al and primitive unit cells in real and reciprocal unit cells of an fec lattice :

ENERGY STATES IN SOLIDS 89

8

g

51 5 T A 5 W I 0 I A Y

g

(111)

Intensity (a.u.)
8

&

8

(=]

40 50 ' ) 70
2-Theta (deg)

@

B
g

®)

Figure 3.9 (a) X-ray 2-theta scan of a germanium crystal and (b) an electron diffraction paftern
for a bismuth nanowire (Courtesy of Dr. Z.F. Ren and Dr. M.S. Dresselhaus).

signals in electrical engineering, or the spectral-dependent radiative properties of matter,
which conveniently express time-dependent electrical signals or electromagnetic fields
into stationary spectral properties through Fourier transformations. The representation
of properties of crystals in the reciprocal space assumes a similar role. SE(EL&EEXI’E_B?!S
have been designated for different directions of the reciprocal lattice. For example,
in figure 3.8(b), the T point.is the center of the Brillouin.zone.The. T-X_direction
represents the [100] direction of the real lattice, and 'L, the [111] direction of the real
. Although a very abstract concept, the reciprocal lattice can actually be easily mapped
out with diffraction experiments. When electron waves or X-rays (electromagnetic
waves) with the proper energy are directed onto a crystal, the reflection or transmission
occurs only along specific directions, as shown in figure 3.9(a) (X-ray reflection) and
figure 3.9(b) (electron transmission). Such phenomena, known as diffraction, can be _
attributed to the superposition of the incident waves and scattered waves. Consider an

* incident wave (an electron beam or an X-ray beam) from the source along direction k.

At any point in the crystal, the magnitude of the wave is proportional to ¢'¥*"~Ts) where
r; is the location of the source relative to the origin of coordinates, as shown in figure
3.10(a). The wave scattered into the detector is then proportional to n(r)e**Fa=n),
where k' is the propagation direction of the scattered wave and ry is the position of the
detector. Because each atom scatters the incident wave, the total magnitude of the wave,

.S, at the detector is

S o f eik-(r—r.;)n(r)eik’c(rd—r)dv — oi(korg—ker;) f n(r)ef{k"")“dv

whole s
crystal e
= Z ef{k‘.rd_k'r:) f nGei(G+k—k')-rdV (316)
G

whole
crystal
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s+ sample at a fixed direction, and the diffracted X-ray is measured by a fixed detector;
- refer to figure 3.10(a). The crystal is rotated to change the angle of incidence 8
[figure 3.10(b)] with respect to a special crystal plane. When the Bragg condition
is not satisfied, the detector will register very little signal. But when crystals are
rotated to the positions where the Bragg condition, eq. (3.18), is satisfied, the
detector will register a peak. A typical scan curve is shown in figure 3.9(a). Different
peaks correspond to different crystal planes. For an X-ray of wavelength 1 A and a

first-order diffraction peak at § = 30°, the corresponding spacing between the two
~ crystal planes is

™, Crystal Specimen,

1A
a=—-—
2 sin 30°.

=1A

eik-(r—r,)

Detector )
Source

(@) :
Figure 3.10 Derivation of the Bragg diffraction condition for (a) the general case and (b) the 5

one-dimensional case.

3.2 Electron Energy States in Crystals

In the previous chapter, we discussed the energy levels of single atoms and harmonic
gscillators. These energy levels are typically discrete. In solids, the wavefunctions of

- closely spaced atoms begin to overlap and form new wavefunctions and, correspondingly,

!iE:T.r_e'nergy levels. We will see that the energy levels become more continuous than those
of individual atoms. This trend can be thought of as the result of the broadening of the
energy levels of individual atoms to avoid the overlapping of wayefunctions because,
‘according to the Pauli exclusion principle, each quantum state.can have only 2 maximum_
- of one electron. In crystals, the most fundamental characteristic is the periodicity of the
lattice. Such periodicity brings in many new features to the allowable energy levels of
¢lectrons as well as phonons. In this section, we will start from a simple one-dimensional
thodel to examine the effect of periodicity on the electronic energy levels and then extend
the discussion to three-dimensional crystals.

where we have used eq. (3.11) to expand n(r) into 2 Four'icr series. Becafxse. th::h expon;il-
fial function e (G+&—K)*r is a rapidly varying function in the crystal with both nega et
and positive values, the above integral will be close to zero except when the exponen
vanishes, that is, when

G+k—-K=0 (3.17) 3

Equation (3.17) is called the Bragg condition for diffraction and determines 11‘.ht=:, rgl:; :
tionship between incident (k) and diffracted (k') waves. The wavevectors . an :
are determined by the relative positions of the source, the sample, and the atect(;; i
and therefore the reciprocal lattice vectors G, and thus the crystal structure, ¢an be ;

d ined from diffraction experiments. e ; o &
et;:?nBeragg condition, eq. (3.17), was derived by considering the scattering ot: indi |
vidual atoms. We can treat each crystal plane as a continuous sheet and establish ];r; ;
equivalent condition based on the interference of the waves l‘ﬂﬂl;ﬂled g;m; aﬂetsh:egaarra at:d :

i ific directi i ial set of crystal plan
tal planes in a specific direction. Consider the specia
‘ :er: disptance a, as Is:l-u)wn in figure 3.10(b), and an incident wave (photon or electron)
og wavelength A at an angle 0. Constructive interference between wavesdriﬂ(:cteegnfr&rz :
hase difference of the waves scattered between B =
crystal planes occurs when the p! . il
i i that the path difference 1s 2a s
nsecutive planes is n. From figure 3.10(b), we see : : _

%ns diffracit)ion peaks will be observed w!:_aen the path difference 18 multiples of ihe.

wavelength,

3.2.1 One-Dimensional Periodic Potential (Kronig-Penney Model)

[et us.consider a simple one-dimensional lattice. The potential field is a periodic func-
tion, as sketched in figure 3.11(a). At the location of each ion, the electrons are attracted
by the ion and have the lowest potential. As an approximation to the actual atomic
potential distribution in a crystal as in figure 3.11(a), we consider a square periodic
potential as shown in figure 3.11(b) and want to find out the energy levels, assuming
there is only one electron inside such a periodic potential. As in the case thatthe hydrogen.
Eﬂﬁ&l?‘&&aﬂbﬁ,wd to explain the periodic table, the existence of many electrons in a

U: Potential Energy

2asinf =nk (3.18) : %

It can be shown that eq. (3.18) is 2 special case of eq. (3.17). The proof is left as an x
exercise.

b 0 aath

‘ : . ®)
Example 3.3 X-ray diffraction

One way of using X-ray diffraction to determine the crystal structure is the rotating

gure 3.11 One-dimensional periodic potential model: (a) sketch of atomic potential;
crystal method. In this method, an X-ray of fixed wavelength A is directed onto the

(b) Kronig-Penney model.
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wavefunction nside one unit cell. For the i i
: gl . one-dimensional problem bei i
denoting k as the magnitude of kin the x-direction, eq. (3.27) is R

+in picture obtained fromthe one-eleclon assum . This :
alled the KromgﬂPenney model. #

crystal does notchange e AN
one-electron, rectangular perlodlc potennal model is ¢
The Schrodinger equation is then
2 420 _ )] = W (x) explik
A By =0 (3.19) 3 b plik(a + )] (3.28)
4 \ tinguish the wavevector k from the :
e mtere . FiCB ‘.RmEagath.ﬂ,_YeCto; 92 .‘.29 soluti K

27 o, e el e A mEmeme —
i dX m ° - Pl . W
el A

explain later, in more detail, the meanin

MR, g of wavevector k. Wi .
bet;/een 11; ;mdhE which is equivalent to a relation between k a?u‘i)v }a{m 19.ind & relation
; m ?
tlx;L 30(:03: $:\?r?un:1’ we know that if the wavefunction for —b < x < 0
by explika + b) Tha ctionfora < x < a_tbjs thengivenby eq, 3.23) e
. by -_2 (a+ b)]. The continuity requirements for the wavefuncti 2 muliplie
atx = a are then nction and its derivative

- The potential distribution U (x) is given by
0 D<x=a i
Ux) = {Uo b <z <0 (3.20) 4
subject to the following periodicity. requirement
TG ratn=Uml

AeiKa +B —iKa - —Qb
e (Ce=2% + De2) explik(a + b)) (3.29)

Solutions for eq. (3.19) are
; iKa _ _iK B
iK (A% — Be™! ) = 0(Ce™@ — De@)explik(a+b)]  (330)

U = AdK* +Be'in(0 <x<a)
N i
ow we have four equations, egs. (3.25), (3.26), (3.29), (3.30), and four unknow
N ns,

A , L. g ese equatlons l]ldlCateS t]lat thl 1S a t fhllea] h()“l()ge]le()us
B ( l) IEXa”ll] mn th sS1saseto

equatlons a“d 18 [hus agaln an elgellvalue pl OblCIn and a Solunm eXISt
deterl!ul‘la.l'lt Of the CBeIECICHtS A B C and D equals ZBIO I]()lll t]ll

W= Ce?* +De ¥ (-bsx= 0)

where =3
F_:;;F_ K R0 Q =/ . 3 arrive at the following equation
K__]‘;-‘-' L1 E= andUp—E= 55— ' 9 )
v( —\J e 2m 2m Q_K2'nh.b
2T 4 -
and K and Q are to be determined, from which the eigen energy E of the electron inside : 2KQ (0b) sin(K a) + cosh(Qb) cos(K a) = coslk(a + b)] (3.31)
such a periodic potential is to be extracted. e here “sinh(x)”
y (x)” and * » -
the unknown coefficients A,B,C, de— ihe = C(;sll(]r(lx) are hyperbolic sine and cosine functions. For a give
) y unknown in the above equation is the electron energy E vfhicﬁ

Four b bow@a&mﬂuun&med to determine
and D. We can use the continuity of the wavcfuncno

3 iS T i th K and Q Th t] a 0 determine a
€. : l)edd.ed m b() - us he bOVC € i
quatlon can be uSCd t d i
elatlonshlp betweell E a]ld k. IO get a bettCI ]‘dea Of What the SOlution IOOkS hke let
) S

n and its denvatwe at x = 0,3

which gives
A+B=C+D (3.25)'“ k  assume b~ 0and Up — oo, but keep Q%ba/2(= P
= - a = ) equal t :
pproxtmanon. sinh(Qb) ~ Qb, and cosh(Qb) ~= 1. Equ(zltion C(>3a3clonstant_ ndegty
9 .31) reduces to

K(A—B c=D - \ & 2 3

iK( ) =0( ) =~ > iSIDKa+COSKa_coska‘;’& §Ui\-"‘r"“‘3\:"e 1"'\I

a e VO 2 2332)

TN

We can sol
solve the above equatlon for (Ka) as a function of (ka) and use eq. (3.24)

to,
md{zngfo:;ltealll%w;ble energy E from K. One important observation is that the.magni-
eft-hand side_ of eq (3 32) can.be larger than 1 whereas the right-hand

Two more boundary conditions are necessary to to determine the four unknown coe
We can consider the continuity of the wavefunction and its derivative at x = a, but this.
requires that we know the wavefunction ina<x <a+b The wavefunction in this

_b < x < a because the potential is periodi

region can be related to that in the region
1, the wavefuncuon at any tw two pomts‘siep;rated by

Due to the Eenod:m yi in the otentia
igh the Blog BTJEI: :EEorem.

a lattice vector is related throu
8 A ————
W (r-+ R) \I’(r) cxp(;k ° R)

i

where R is a lattice yector and k is the

implies  that thc wa\refunction values at gggg guwalent E”mE.S.!@.L I+ R] inside :
oW only_

crystal differ by only a phase factcr exg o R) an and that we need to. Kne

A gIaphlcal I P rl
€ ]esellt'ltlon Of ﬂle left ll'l]l(l S de IS Sh()WIl 11 ﬁ ure 12 WheIe the
g 3
Ilght hand Slde 18 bOunded Wlthul 1 1 Ill t.he Shaded regloﬂ there 18 no SOlllthIl fOI
}( and thus no electrons Wlth energlcs COerSpondlng to SuCh K valuCS eXlSI F‘fc Caﬂ

: cqmﬂlesolutwn for K into en: redraw
3@ TR _.E_LWMJ.&M“
mﬁE.lm;3I The figure shows that, for each I#e 4 haf ction of & own.

Mﬁw
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FUNCTION (P/Kay'sin(Ka) + cos(Ka)

is always less than or equal to
regions.
@%‘iﬂf

f‘“(sﬂo:hl d:i!

the Bloch lhEQI'B

T

Figure 3.12 Left-hand side of eq. (3.32) as a fu

Ka/m exists, and thus no electrons exi

‘5) 'I:hc electon wagy@m&mggg@m bands_(because k itself 1.5 quas;-

ok _ sx/a, at which the right-hand side {side of eq. (3.32) 18
Figure 3.13(a). unphes that there are mulugle values of k for each energy
eq. (3.28), s
they are
27 since “0) are identical, they
L m("w g rather than ploting fhe en‘erg' y‘e:"genv"ﬁm

d should be counted onlz once. Thus’
:l‘; the wavevectors, we can plot ‘them in one period, as shown in figure 3. 13(b) This

Ka/m

action of Ka/x. Because the right- -hand side
one, there are regions (the shaded area) where no solution for

\ch other by, a minimum gap that occurs at ka = ST -

E. However,

ays lhat wavcfu ctions correspond to the waveyectors
the same quantum state

pUs =2
/J ‘)_{_EZ"\@: e’i‘k&\% m)u;(—"x
oo = C

v

| E,=hemad)
T
I

E/E,. E,
g
Normalized Electron Energy E/E,
o
T
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o

-
=3

st with energy corresponding to the values of K in these | b

=1 —1 | |
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Reciprocal Space @ ® @® © 6 @
l2_711/111 <
' 2m/a

First Brillouin Zone
Wigner-Seitz Unit Cell

Figure 3.14 The Brillouin zone and Wigner—Seitz unit cell of a one-dimensional lattice.

way of representation is called the reduced-zone: ation. Often, only half of the
‘band, [0, 7 /al, needs to be drawn because the band is symmetric for both positive and
negative wavevector values. The relationship betwes energy and the wavevector,
as examplified in figure 3,13(b), is iSpers = .

=] e see that the minimum sepa:anon b twecn two, energy bands occurs at
k(= s/a, 5 =0,%£1,£2,.. .) What do these &, stand for and why do the minimum
sep g e'one-dimensional lattice being considered with a lattice
constant equal to a, its reciprocal lattice is also one-dimensional with a lattice constant
equal to 27 /a. The Wigner—Seitz cell in the reciprocal lattice, which is the first Brillouin
zone as we explained before, is shown in figure 3.14. The boundaries of this primitive
unit cell in the reciprocal space are at == /a: Thus ki, represents the lattice vectors
constructed using the primitive lattice vector of the Wigner—Seitz cell in the reciprocal
 space for the one-dimensional lattice. When we generalize to three-dimensional crystals,

k,,, will be replaced by the reciprocal lattice vector G. In most cues%ﬂ

A !
_ Occurs at the: Bnlloum zone boundanes that is, when k G. This 1s not a coincidence

; 2 e o%%g&rw This
mechanism is not very d1fferent from the obsenranon of diffraction peaks by X-ray and
electron beams that we discussed in section 3.1.4. We also plotted the energy dispersion
of a free electron in the reduced-zone representation in figure 3.13, which does not show
an energy jump at k,, but is otherwise similar to that of an electron inside the periodic
botenua] The main effect of the periodic

T
‘W@' as a result of the dxmﬁ“{)n of the electron wavos More discussion on wave
interference will be given in chapter 5.

. We now determine the value of the wavevector & in the Bloch theorem, using the
Born-von Karman p eriodic boundary condition. This boundary condition deals with
| points of ' arily, we would think that the two end points are
different from the internal points. For many applications, however, it is not necessary
to distinguish the boundary points from the internal points, because a crystal usually

ires, and quantum dots). The Born-von Karman boundary condition requlres that the
pomtsxpe equal to each other; !hal is, the

as a function of its wavevector: (a) cxtended zone representation

e
e e n. Dashed lines are free electron energy levels. Solid lines from:3

(b) reduced zone represcmauo
Kronig—Penney model.

U[x + N(a+Db)] = ¥(x)
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Erersy E
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A
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i K= 0 1i(ws) O 1 W0 1 W)
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(a) (b) o " Semiconductor Scricond Sermiconductor
©) @
e . . 1 i i (e)
Figure 3.15 The von Karman boundary condition joins the two boundary poinis 1N (a) into ] .
; Figure 3.16 Explanation of metals, insulators, and semiconductors based on the one-dimensional

band structure. (a) Electrons in metal i
‘ : partially fill a band. The top-most level (E r) i
Femt;u Ieve.1£ (g)t Eltelctrons fill to the top of the band. When the energy gap Ej is l(aréfe) Lsoc;gz‘tjr:rllz
can be excited to the next higher energy band and the material i ical i ’
. ( : lectrical insulat Wi
the energy gap E is relatively small, some electr - o A
A ectrons can be thermally excited to th i
energy band (called the conduction band), leavin AR
e . g the same number of empty states (h i
- yalence band. The material is an intrinsic semi R
conductor. (d) Impurities (more common]
: 1
?oliﬁri;s) .may.h.::.ve an cel:rfwrgy level close to that of the conduction band. Electrons can beye)i:iizg
rom the impuirities and fall into the conduction band, resulting i :
| ; . , g in more electrons than holes. S
a semiconductor is called an n-type semiconductor and the dopants are called donors (e)SWEZkr:

a periodic loop in (b).

Using Bloch is| theorem, &g, (3.23) can be,wmtgyas
W(x) = ¥(x) explikN(a + b} (3.34)

yeyeators of the Blochwave -

The abg‘W@  conditions.on the alllo__w’,aplx

inside.the

e =Tl S
27 : the impurit
- 2nn . 3 272 ni _ 0,%1,%2,...) (3.35) e iEtoﬂﬂi’eeif;;i}[’ii;\';l:;rjecIgse to the }\:alence band, electrons are excited from the valence
a 3 : A , leaving more holes behind. .
— {(a +b) B——— B e e ehind. Such semiconductors are called p-type
where L is the length,of the.crystal.
r k in the Bloch theorem? The exponenual :

“SWhat is the meaning of the wavevecto
factor €% in eq. (3.28) resembles that fora free electron, as we
2.3.1 and eq. (2.34). In the latter case, ik represents the momentum of the free electron.’
The momentum of an electron in the crystal, however, should be calculated from the
ator —i AV Y. Such a calculation would show

wavefunction using the momentum Opex :
that fik is not the momentum of the electron in a crystal. Nevertheless, in u%am
tron and thus it is called 2

fora penochc potential behaves asthe momentum of a free elec
tﬁe ¢ ‘Ihcmumsnmmawsewm ruleduring: the collision-of: swe&'al

pamcles (now electrons, and later to be generalized to photons and phonons) is
L

th, Eh(k £+G) \ (3.36) 3

-_-.—--— o .

‘tllflet still Lhe mean free'path of an electron can be as long as thousands of angstroms, and
’to.e 3{151; etr of atorgs ina f:ube on the order of one mean free path is enormous ;106
Eh e a totms.d It B15 amazing that an electron can zigzag through these atoms \;vithout
3 scattered. Because of this behavior, we often t

] reat electrons as a gas and neglect
the ions completely, except when considering their occasional scattermg effect. y

Although the above solution is va[;g only

electr_ons does not aﬁect the quahtanve glc

discussed in section

twcen electrons i all : ihe . bands
s is small. compared. fp the potentials befween elec-

oulomb potential |
%mgm“wn suchasi sunple plcmre of the energy bands, we can begin to understan

e difference between insulators, metals, and semiconductors. In the first Brillouin zone{s¥

th
wzre are N allowable wavevectors for.a lattice.chain with N lattice, pomts Becz_fugeueach
vevector represents a wavefunctxon and each wavefunction can have a i 0%)

where the indices i and f mean the states before and after the co]hswn,

addition of ;gg;gmmcﬂm - r.into.the first.Boiiouts
zone, and is.a. consequence.of.the. MmgaLuaxsfunquons and crmxgx.mgenvaLues for 2
waves wnh wavey ‘

The simple model of one electron in
messaoes wh;ch we will chscuss below.

respectively The. * two electrons wilh different spins,.cach.band. (21
ins,.cach band can have,a maximum.

for a one-dim qu,um“ At zero temperature, the filling sl forthe, electrons.is

\ ey.always.fill the lowest energy, level first,.as required by thermodynami

. cs. Fi
?}?;a}l)la;r:ftilsoi?d lrlloll;leﬁ 1rlmz,ltals that have one valence (free) electron per p}rr?lmtlve ce?lr

y ha ed since there are only N valence electron

: t

: ;t;:wn in figure 3.16(a). The topmost St energy level that is filled m[hse:]l:cgghggls i
vin is callggq_ he ljgnrn Jevel.. The electron energy and momc e

* oy . ’ A H Wm&w,hﬁﬁh@ged

¢ the separation betw

side a periodic potential carries many important .'

Thls modcl shows that thee ron doesaot

the scattermg due to the dlstortlon of

St e ele uu-__ In reahty,
potentml from the pcrfe:ct perlodxclty reduces the spatial extension of the wavefunction.

N 1+ jﬂt‘h&_‘ -a.f-hm eods Lﬁﬁ‘\ﬁk @Qu_&t LY

_ T hWweaye  Jlhare ¥ YT S 9—*‘@\_{_& 3

*
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materials good electrical conductors. If the valence electrons exactly fill one or more J
bands, leaving others empty (figure 3.16(b)], the crystal will be an insulator at zero 3§
kelvin and can be an insulator or a semiconductor at other temperatures, depending
on the value of the minimum energy gap between the filled and the empty band. If a¢
filled band is separated by a large energy gap (>3 eV) from the next higher unfilled
band, one cannot change the energy and the momentum of an electron in the filled band 3
easily; that is, these electrons cannot move freely and the material is an insulator [figure 3
3.16(b)]. A semiconductor is essentially similar to an insulator in terms of bandgap. Th
difference between them is that for a semiconductor, the gap between the filled and the 3
empty bands is not s0 large (<3 eV), such that some electrons have enough thermal -
energy to jump across the gap to the empty pand above (called the conduction band) &
[figure 3.16(c)], and these electrons can conduct electricity (these materials are called %
intrinsic semiconductors). The unoccupied states left behind also leave room for the 38
electrons in the original band (called the valence band) to move. It turns out that thg
motion of these electrons in the valence band is equivalent to vacant states moving as
positive electrons, or holes. The energy of these holes is opposite to that of electrons; (
it is 2 minimum at the peak in the valence band and increases as the electron energy
becomes smaller. Impurities are added to most semiconductors and these impurities have
energy levels somewhere within the bandgap; some are close 10 the bottom edge of the
conduction band or the top edge of the valence band (or band edge). The electrons in the
impurity levels can be thermally excited to the conduction band if their level is close to =

the bottom of the conduction band, thus creating more electrons than holes in the semi- 3
conductor. Such semiconductors are called n-type and the impurities are called donors
[figure 3.16(d)]. Similarly, if the impurity energy level is close to the valence band edge, &
electrons in the valence band can be excited to the impurity levels, leaving more empty
states or holes behind. Such semiconductors are called p-type and the impurities are .
called acceptors. Apparently, the number of electrons that are excited to the conduction

band depends on the thermal energy of these electrons. This is why semiconductors are

especially sensitive to temperature variation. Referto Appendix B for more discussionon’

semiconductors.
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e 1Fowslfy and Cohf?n, 1976). Copper is a metal because the Fermi level, falls
-Eand 5 ) S " =] e.rml le'vel.for Si and GaAs at zero temperature is at the top of the valence
pand and that of lhlcon is an indirect gap semiconductor since the minimum of the conduction
;enﬁconductorob tc e val;lnce band are not at the same wavevector location. GaAs is a direct gap
-5 ecause the minima occur at th . P
 yalues are those at 300 K. e same wavevector (k = 0 for this case). All bandgap

?z E = (z s0 that'all bands below this level are filled. Above the filled bands, an ener,
fh p exists in which no electrons are allowed at T = 0 K. The values and lé)éations go};
m;en;arr;zréy gap are different for dissimilar crystallographic directions, and the absolute
i Of,c;rﬁg (1; I(;ai}l]eg the b(cimlcligapi GaAs is a direct gap semiconductor because the
ction and the valence bands occur at the s il
min : _ ame wavevector. Si
gic::etct g(ziiP s;rmconduc;or because the two minima do not occur at the same wavevelcst:;li'l
ct and indirect gap semiconductors have major di i ' -

irect ‘ or differences in their opti i

Direct bandgap semiconducto i e
1s are more efficient photon emitt i
R N S ers, semiconductor lasers
. tors such as G i i

AR aAs, whereas most electronic devices
: b;mlet);n sgr;}m;pnductq;s, since m_cl)s_lhe_le.,ctrons are close to the minimum of the conduction
b and_q les are close to the minimu of the valence band, it is convenient to express
t iéanE z tst;ucturfczﬂqﬁ; the minima in analytical “form. Since the minima typicall;
e 31 et SZ ﬁgcigrde;ﬂm vative, d.LJ ok 1S'ZET0 (A Tong as the first-order detivati :
e ) cond-order terms often are used. For the conduction band, the expansi

¢ electron allowable energy level near the minimum is.often wii '_'}'?ﬁi tﬂ'e’lflcs_rftl"1 -

2 [ 2 2
SR (.- e
2 \mu myp mzn (3.37)

3.2.2 Electron Energy Bands in Real Crystals

The energy band structures for real materials are more complex but have similarities to,
the one-dimensional potential model. Ipb_threc-;_limensig_r:lgl crystals, there are different
crystallographic directions. Each of the directions has different periodicity and acorre-:
spondingly different potential profile. Tﬁhmgm cellas an example, the
period is equal to the lattice parametera in the (100) direction, /2ainthe (110) direction,
and +/3a in the {111) direction. In each direction, due to the difference in the potential ¢
and periodicity, the energy bands will be different. The energy bands can be plotted along

each of these directions and, particularly, along the major crystallographic directions, as
in figure 3.17 for Cu, Si, and GaAs, the latter two being common semiconductors. The
special points on the first Brillouin zone surface, such as X and L, which are indicated in i
ﬁ@g@;rf@iz:@émmwﬂs;f.e.n.l.zp;mnb,tsﬁ_is.@feté°‘ﬂ.5'fﬁl“ééﬁﬁ#“f-fﬁi#Ff;r_lzé. tevel £

at 2o kelvin falls inside a band. Therefore, electrons close to the Fermi level are free
o move with minimum thermal energy disturDance. PoFSTand GAAS, the Fermi Tevel i

Inpaean JPT pe LT - - -

< g e SUNRT

hﬁ
m,-j =

(3.38)
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Figure 3.18 Constant electron encrgy suirfaces in reciprocat space (or k-space): (a) a spherical

band such as in GaAs; (b) an elliptical band such as in Si (after Shur, 1990).

E-krelationand is called the eff ective mass,

is representative of the local curyature of the
and E is the _n._nf he o i

its name from ¢
S on A ERITAN,

The effective mass is a second-order tensor, acco

valid only when x, y, and z are the principal directions of the effective mass tensor and
E.isatk = 0. For a spherical band, m11 = m22 = ms3 and the energy—wavevector
relation, that is, the dispersion relation, reduces to the free electron form, except that |

the free electron mass is replaced by the effective mass. Using this effective mass, we

can treat the motion of electrons.in the conduction.

d, which depends on the hole effective mass
By setting the energy in eq. (3.37) to a constant, We,can.p! )
surface in E-siaﬁ,’ﬂfﬁ%inm&:tﬁéﬁg Brillowin zone. Examples of constant energy

surfaces are given in figure 3.18. o

free electrons (or holes).

3.3 Lattice Vibration and Phonons

with the electron energy levels in solids. We now turii our

The previous section deals

attention to the vibrational energy levels of atoms, or the lattice vibration. Here, the 8
is (we recall that the lattice 3

term “h&@i&efmjmmj_@gm@mmawjmﬂms
in crystallography is a mathematical abstraction of
what we have done for the electronic energy levels, a simple one-dimensional model
will render the fundamental characteristics of lattice vibrations. Therefore, we will start

our discussion with a one-dimensional model and then move on to more complicated

Ccases.

3.3.1 One-Dimensional Monatomic Lattice Chains

Let us consider first a one-dimensional monatom ic chain, as shown in figure 3.19. By

limiting our consideration to monatomic chains, we have m

: ¢ conduction band,.or band edge. The effective mass.derives. |
he fact that the free electron encgy.can Esmas&%sj__?_;.= Bk 2m,
1S rding to eq. (3.38). Equation (3.37) is 8

2 - 2

periodic points in space). Similar to 3

ade the following simplifica- &
(2) the separation between adjacent A
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|4— Na > |
=

(s ja (+1)a

Figure 3.19 One-dimensional monatomic lattice chain model

We will make the followin ions i

: g assumptions in the analysis. First, we i

. = ! : consider
force. interaction between the nearest neighbors only. Second, the interaction foﬂ?
between atoms is assumed to be a harmonic force (which oheys Hookes.law) rc:;
i— . - 0 S Y : v
;pnni c‘onstafllt1 K. This assump.tlon can be justified in a similar fashion to that aone ;or
‘ armonic osci at01:s: Now consider a typical atom j. The displacement of atom j

its equilibrium position x? is i

B
uj =Xj —X; (3.39)
;};;lzzzfleﬁngi on atoxtn J comes from two components. One is due to the relative

ween atom (j — 1) and atom j, and the o i
i ; th i

. displacement between atom j and (j + 1). The net force is theflr Lk
Fi=K(ujry—uj)—K@uj—uj_) (3.40)
-‘nciAEj this p.ollnt, we have two <':hoices for continuing this discussion. The first choice
ih ulles wbrlltmg out the potential and the Schrédinger equation, and then solving for
e allowable energy. But for our understanding here, a classical approach is easiir to

grasp and the quantum effect can be added i i
: into the classical i :
Newton'’s second law to atom j to obtain BB e

L d
: 1 2= KQujir —uj) ~ K(uj —uj_1) (3.41)
5 The above equation is a special form of the differential wave equation
: ; %u a%u
Mm— = Ka*—
! Y Ka Py (3.42)

which has a solution of the form i (et —kx) Sy
- of solution for Eq. (3.41), e -Sucha similarity suggests a wave type
= AMERlA (i S ] (3.43)
where s the discrete equilibrium Iocation of atom.j, cais the fre e

P ey s =
evector. The major difference between this “guessed” solution and the conventional

; E"-‘ ¥ e .
ontinuous wave, exp[—i(wr — kx)], lies in the use of (@} as a discrete lattice coordi

tions: (1) the mass at each lattice point is the same;
atoms. _i_s‘,j.he"sg';rfic;,and (3) the force interactions between adjacent atoms are the same.
- 53 - -, iy - - o — PO TS TR——— v —ov .

Such simplifications are no longer T when the basis comprises more than one atom.

_bate rather g gl %
¢ edinm, 'Bﬁiﬁaﬁ?ﬁ;zﬁﬁ%ﬁﬁkb continuum coordinate “x" used in a continuous
por , ok : -6

 neaniipless: ibration at locations other than the atomic sites is

<
i

i i

L e
W
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Figure 3.20 Snapshots of the at
differ by 27t /a. The displacements of the atoms are the same
in the figure. The short wavelength mode means that atom disp
space between two closest atoms, which is not possible. Thus, th

phonons are limited to the first Brillouin zone.

for the two given wavevectors drawn
lacements would existin the empty

o allowable wavevectors for i k / (nfa)

@

1 I . g . ;
{:;tgtiC; ci j}]l Exlorgn dispersion 9f a 9ne-d1mens1ona1 (a) monatomic lattice chain and (b) diatomi
. The Debye approximation use a linear relationship between the frequency angriﬁ:

) into eq. (3.41), we get
wavevector. BZ stands for Brillouin zone.

Substituting the guessed solution (3.43
_mo? = K[+ e~tke — 2]
oF between the frequ
BT et en the frequency and the, wavevector. This approximation is valid at 1
ki quencies but is not a good approximation at hi . at low fre-
gh frequencies. In the very low frequency

R 1K oL
w=2—|sin > (3.45) region the lattice yibration carries th ,
ttice vibration cammes the soun : P v =2
L - . Debye approximation in the next sectibﬁ.ngyg? e
The allowable wavevector can similarly be determined from the von Karman periodic 8 #52
3.3.2 Energy Quantization and Phonons == X : 3_\.6""(;;, =}
WO C;E(_L}{-—.-.

Pg_unaary condition, as we did for electrons,

e
PR l (n=0,%1,%2,...)
Na

et

The abo i .

Vibration\z :;:rtme:tt is l})]ased on cla:sswal mechanics. In the classical solution, the
e tise the Scﬁi’dd' cac freql}ency is determined by the amplitude A in eq. (3’ 43)
Hispersion relation i Htlk% L e tOlsolve the same problem, we will witness tha't the:
> quantized. This rls le Sty .The difference is that the energy of the lattice vibration—"
* dealt with ir.1 cha t:3121 tf1 : Snm-lar - the,\’ case of a simple harmonic oscillator that we
classical mass_spl;nrg S’ys?; H\ivl[z;h(t;z g)l]br;ti;)&al frequency is the same as that of the

At each frequency determined by eq. (3.45), mezggjvﬁeoigégsg;tso;:quamlzed

(3.46)

\ When treating the electronic energy levels, we assert that the states for k and 3
N [k + m(2n/ a)liare identical, as shown in figure 3.13(a) F.E, thc tﬁf:e vipga;gigp, we
\s.@g;g.rgug.pms;czﬂ}}i,t.lm ies.of . for Jattice yibrations lie betwesh,
_N/2 and N/2 and the extension of k beyond the first Brillouin zone is meaningless.
From k = 27/, Where A 1s e wavelength, we observe thatifn > N'J2, % will be less
than twice the atom spacin ng; this mms.ﬂ;ax@moﬁgmwns&m |
as shown in figure 3.20. Talking about atomic displacement in empty spaces with no
atoms is meaningless, Thus, e afloviable WayeYeCtor for a laitice vibration is naturally
confined to the first Brillouin zone. ;i : -
e e s e e o TI $ -
Equation (3.46), together with the limitation on 1, states that for a monatomic, one-
dimensional lattice chain with N atoms there are N allowable wavevectors. Each of
these wavevectors comesponds. 10 one_mode of the f{attice vibration. Each mode is’
mathematically described by Ea. (3.43) and is called a normal mode. Normal modes -
are a familiar concept in the vibration analysis of structures, drums, and musical’

instruments.

Figure 3.21(a) shows
and the wavevectorfora monatomic lattice chain.
very often the Debye approximation is used, whic

et

... \ , I
2 \En=h 2 i
; (n + 2) | =0tz (3.47)

This quantization is identical to that o
'ﬁfﬁﬁ%?ﬁﬁ?o? t_:gl;depuc_a; to that of a single harmonic oscillator, eq. (2.54), and to
i p'f,on'gn{. yeen ﬁa_l'llqton energy and its frequency. The similarity leads to the
lattice vibration, 'Eaéhpagé'?"j%?i FEHE‘:P;P_{'PIPEPH'S, e 4
ke rdation h/;; T};n as an energy of hv. Its momentum is, according to the
TS la,t ! = hk. Under the phonon picture, we can forget about atoms
W :e wz(xives or the 'phonon particles in a crystal just as we treat the
S 1amcs ar.lb pt_lotons in a box. For many materials (nonmetals), heat
§ pondutd by lattice vit ;@B%E_From the analogy between photons and phonon
gical to expect that lattice heat conduction should obey a law similar to thsej

the dispersion relationship between the vibrational frequcncy'
att ’AlﬂTbﬁ’gﬁfﬁlTrélaiﬁJrﬁth”fs' nonlinear,
h assumes a linear dispersion relation

W

)
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Stefan—Boltzmann law, which is proportional to the fourth power of the temperature. 3
This temperature dependence s not evident in most of (if not all) the heat conduction
calculations that we learned in an undergraduate heat transfer course. The reason is that
in most cases the phonon scattering is 50 strong that thesc waves Ca7R0 1 avel along
Jistance, At very low temperatures, in fact, we can calculate heat conduction just as we '
do with radiation (Casimir, 1938). A similar situation arises when dealing with very thin 3
films, for which internal scattering does not occur as often as in bulk materials.
Although eg. (3.47) is identical to the expression of 2 single spring-mass har-
monic oscillator, there are indeed differences. For an isolated harmonic _oscillator 3
only one vibrational frequency exists, while for a lattice chain N, wavevectors (where
N is the total number of atoms in the chain) present, and thus i frcguencicsq@osgi&lg,
Each of these allowable frequencies st yports an energy that must be 4 multiple of ~v.
How many phonons actually occupy cach state at a specific frequency is 2 point that we 3
will address in the nexl.chaplek.

We should emphasize that although photons and phonons can be thought of as particles
with an energy hv, these particles are fundamentally different from electrons. Some of
the differences are discussed here. gllalik“f__e@gt;qn;?,__phonon,_s and photons at rest do not .
haye mass; and are fictitious particles since they are the, quantization of the.normal mode
< of afield, Electrons obey the Pauli exclusion principle, which says that each quantum

state can have only one electron at most. Photons and phonons are not limited by the Pauli
exclusion principle. Each quantum state, which corresponds to one set of wavevectors, |
qpftﬁfﬁg}?ﬁﬁm‘ and photons, as is indicated by eq. (3.47). The differences in |
behavior between the various guantum species will later be reflected in their statistical
behavior, which we will discuss in more detail in chapter 4. Due to the differences in
their statistical behavior, electrons ar¢ pgallggife‘rmians_,“while_ phonons and.photons.are

called bosos.

®)

Figure 3.22 In the lon imi
i g wavelength limit, the two at i i
in phase (a) but are out of phase in the optical brancs (obI;lS o R

branches with (m — 1)N optic modes. ch.with.ALacousticmodes.and (m — 1) optical

3.3.4 Phonons in Three-Dimensional Crystals

In a one-dimensional latti
1 attice, the phono itudi
S non waves are longitudinal wav
dmensions, ngf%l; th_’lﬁjc{tcf):mhs_ can vibrate in three dimensions Thusesévsnﬁgilllillge-
ational_branches_ for the acoustic modes—c o : g =
B 8. 10L.L1C. ACONSHG Inodes=—one longitudinal
el ei;s. Fur.thermorc,‘l__f_ there are m atoms _per, latticg:: 0i ?1? A
D e exist, of which 2(m — 1) are transyerse u«:xmcasl"P Lo onons‘ems(.landfmtml)
e ¢ h 2(m — 1) are transye pliC,
dlrgcuonmls Ee ﬁg}p&gﬂ_g@qgggﬁjm a transverse wave, the atogilc displac .
s e Cal:hal(‘) ttﬁ ;I;e' :/t;ve propagation direction. The two transversf:)br;lrf:ll(;r:st
if the two vibrational directi
i : / nal directions are symmetri i
byl :f(a) Shr; ‘S;stp})lerslg)ns a101.1g dlﬁ?erent crystallographic direc}t,ions ar:.dliéitfs with
pasiont, B(e) sho baSie P (21“?}? dispersion relations for lead, which has an fcc stn;e rte i
nd or s, and thus three ac i ’ i
L o dom 8 oustic branches alon 1
. - s ! g each crysta
s atOmgS i) tgeZbS q(b) sg‘ows th.e phonon dispersion for Si, which has 2’1 fcilgtiaphlc
asis. Thus, Si has three acoustic branches and three optical bra Ct}l:re
nches

in each direction. In some hi
: e high-symmetry directi
ons, su irecti
two transverse phonon branches collapse onto one curve Vol - et

3.3.3 One-Dimensional Diatomic and Polyatomic Lattice Chains

If there is more than one atom at each lattice point, several changes should be made t0
' irst, the masses of two adjacent atoms may be different

the above monatomic model. F 3 d : ay be differen
(such as in a GaAs crystal) or the same (such as the two silicon atoms in the basis of
a silicon crystal). Second, t[lq_distapc_es_bg_g_wwp two adjacent atoms may be different. |

And third, the spring constants. between adjacent atoms can. also be different, Taking

these differences into consideration and following a similar analysis as for the one- &
dimensional lattice chain, one can derive the dispersion relation between the vibrational
frequency and the wavevector. For a diatomic lattice chain,. a_typical solution looks -
like figure 3.21(b). The Jower branch is similar to that of a monatomic lattice chain, ©
and the upper branch is similar to the folded represent tion of the electronic energy -
jevels. Note that a gap exists betyeen the tvo branches. The upper branch is due to the’

additional degrees of vibrational freedom caused by the additional atom.in.a unit cell
In the long wavelength limit, the vibration of the two atoms at each lattice point can be.
either in-phase or out-of phase, as illustrated in figure 3.22. Clearly, the out-of-phase
modes require more energy. The lower f_t_e_q_l_lgncy,b_ranch is called the acoustic branch,
and the higher frequency one is called the optical branch, because the high-frequency
phonons in the optical branch can interact with electromagnetic Waves mOre easily. In

R ]

e

3.4 Density of States
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T

3 p vious ChaptEI we Hltl()du ed o) de (S} acy qua]ltu]ll staies
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In the e g Ner: for
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i
. 3.4.1 tlectron Density of States
(110) (100) (uﬂ (110) (100) @ . i ; . L ;
1 T Consider a spherical parabolic band with the following relationship between the energy
5 - ) 3 and the wavevector,
5 12 1 "
215 g . ﬂz 2—_ 2m "EQ
P z ! E—E:::ﬁ(k%-l-ki-l-kg) i “ﬁ’%- )
810 5 . ] 22
g : 2 4
= % = o (k).'! ky:kz =07:l:_', i—n'...,ii (3_48)
0.5 , 2m ‘ Na Na a 2 ’% a b
iicon| | Sili Siicony 3 : s ' )=
o Lead o Sath - ilicon r L where k is the magnitude of the wavevector, <7\(‘€ 'h'-‘) '—‘E'—- & Kk
T ;

Figure 3.23 Phonon dispersion relations for lead and silicon; bmh have an fec lattice. Lea: has
one atom as the basis, so only acoustic phonons are present. Silicon has two atoms as a as;ls, E
and thus there are three acoustic phonons and three optical phonons (lead after Brockhouse etal., 2

1962, and silicon after Giannozzi et al., 1991).

K2 = i2 + 2+ k2 > dk = 2’”%9%%2"
A A =wd (=-E)
. For each constant E value, there can be potentially many combinations of &, ;c:,, k,
7o satisfying eq. (3.48). To find the density of states, we refer to figure 3.24. The allowable
- wavevectors for kx, ky, and k; are integral multiples of 27/L, where L(= Na) is
the length of the crystal along the x, y, and z difét:ti’éﬁ.él"l‘iiﬁiglﬁ_g:;q of each quantum
mechanical state in three-dimensional k-space is (_2;1.,/.L)3. The number of sta-tés between
= kand k + dk in three-dimensional space is then B e S S

tiv gativ lectrons at each energy level
both positive and negative & values, the degeneracy for e .  eners :
can be regarded as 4. In three-dimensional crystals, however, the dispersion picture 1s
(- et e s ——

totally different because each ;r;sta!l9,gﬁ2h§9j‘ir?°ﬁ°.‘:‘_has,it$ own dispersion.relation

ocea of shuooled

between the energy and the wavevector. There exist potentially many.combinatians i R X(aurkz'.@ _ YRk Tug us (3&5%& 24 .
of wavevectors that have the same enegX. As shown in figure 324, for 148 SE @n/L}? 7 |

energy surface in the wavevector space for a spherical band, that is, equal effective masls;
[eq. (3.37)] but in two dimensions. Clearly, there can be many wavf_wecto‘rs on eac
constant energy surface. Because the energy levels in solids are quam-connn&o&:g, we
use the concept of density of states 10 describe the energy degefleracy. We will di: cus; :
next how the density of states is defined, and derwe_ expr?smon; for thf. dsnsaq‘( :d -
states for electrons, phonons, and photons. using simplified dispersion relations deriv
earlier.

where the factor of two accounts for the electron spin and V(= L?) is the crystal

volume. In the above treatment, we have implicitly assumed that k and E are continuous

functions. This should be valid as long as the numbemwmysm “‘\l h@t'

engReh iseaEs) o
On the basis of eq. (3.50), we can define the density of states as the number of bqu_d

quantum states per unit interval of the wavevector and per unit volume, (%

9_() _ # states between k and k +dk /'

Volume of One
k, T UnitCell

§

Vak s | @ (3.51)

'_xfe can also define the density of states as the number of states per unit volume and
per unit energy interval

: # states between E and E +dE ~ 1 (2m*\*? P~ STt
. D(E) = = — (E — EHM2)

where we have used eq. (3.48) to replace k and dk in terms of E and dE. Sometimes,
we also define the density of states on the basis of a frequency interval (as we will do

for phonons). For electrons, eq, (3.52) is used most.often. A schematic of eq. (3.52) is
shown in figure 3.25.

The density of states is a purely mathematical convenience, but nevertheless, it is
central for correctly counting the number of electrons and the energy (or charge and
lomentum) that they carry. As a simple example of how the density of states is needed,
let's evaluate the electron energy of the topmost level at 7 = 0 K, that is, the Fermi
level E;. At 0 K, the filling of electron quantum states starts from the lowest energy

. ¥l - 2T [20F)" -+ Y% ©
'-_Eg_z%:'@ s (_K-) (e%Y %2 =l(E )

Figure 3.24 Constant energy surface in k-space fora spherical }:and,_and vo}ume of one electron
state in the k-space: (2) two-dimensional projection; (b) three-dimensional view.
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Electron Density of States

. &

Figure 3.25 Density of states of electrons in a bulk crystal.

level and moves up from one energy level to the next until all elec
distinct quantum states. The number of electrons per. unit yolume at 7= 0.Kis

trons are placed into -
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3.4.2 rnonon Density of States

The phonon dispersion relation diffecs consid

e phonon dispersion relation differs considerably from the electrondispersi i

as is seen by comparing eq. (3.45) with eq. (3.37). Rather thaﬁiimm& 'W Qg;f;lat.lon.

‘have different polarizations (branches) in crystals. One common simplifica n‘.‘iufélihns
z5).10 Ccrysial o -

 phonon dispérsion is the Debye approximation, which assumes a linear relation between

'tht’-_ frequency a_nd_the wavevector,

L@ = vplk| = vpk) (3.54)

4 s v st ok

* Following a simi ' i
Foll g a similar procedure to our previous treatment of electrons, we calculate

the density of states of phonons. The volume of one phonon state in k-space is

i 2n /L) = 2n)? Y
' (2n/L)’ = (2m)?/ V. Under the Debye approximation, the density of states for phonons

per unit volume and per unit frequency interval is then
AN pdnildk/Qu/LY? 3t

' Vdo " - Vdw  2x%0) (£33
where a factor of 3 has been added to acc
S ount for the three polarizations,of
b Thlfl-‘ Debye approximation, as represented by eq. (3.54)- unE ﬁés_(t‘i;;i.g%pﬂigs"
ralr}c es hav; the same speedin all directions; in other words l‘he medil isi L o
reality, even a cubic crystal does not have the same velocity i’n_ Eifferenmﬂgillin
c

D) =

Ef e 1 .. .
| 3 [ Im* 3/2 - .dl1rect10ns. This isotropic medium will the : .
N&ﬁ = e\cd'ffo(‘ n= f D(E)AE = Fr) (—h—2—> (Ef — E.)*? (3.53) . gompa.red to real crystals. To calculate the c‘;‘iif\?:ezf;;t? different lattice constant ap
denst ' F O NEL - we require that the total number of states in this iSOtfo;ciZ Cconsta;)t of alDebye crystal,
—— - . sta
crystal. We assume that kp is the wavevector at the boundary gyf the eBTillgllo;?r? tzzf; {Ielai
, tha

Often, E. is taken as a reference point and set
can calculate easily the Fermi level from the g

to zero. From the above relation, we

5 s, kp = m/ap int
iven electron number density and the - /ap in the Debye model. The number of states existing in a real crystal having

N ions i
ions is equal to 3N.* A Debye crystal should contain the same number of states

effective mass. '
> 3
Example 3.4 Fermi level et @YV (3.56)
. : . which gi
A gold crystal has an fce lattice with one gold atom, per lattice point and a lattice WRICIIZIVES
constant of 4 n. Estimate the electron 3 ‘ 62N\ 3 .
Fermi level in a gold crystal. e kp = oriap = | =—
e il L 1% } \ 6N (3.57)

‘where kp is cal s
f«s - ;gﬂgkﬂg.}zdﬁ}% Debye cutoff wavevector. Correspondingly, the Debye frequency
8 -__‘it should be noted that the Debye approximation does.not.represent.the reality.at

" Brillouin ispersi - : ihoaral

: mﬁﬁfﬁp égt‘%?)g,aﬁy, walhem the dl?pﬁrSlon is flat, as shown in ﬁgures- 3.21 and 3.%6
bt approxima'ti - It1s also not suitable for. optical phonons. For the latter, a mucl;
'. e }3;1 t;‘s to set al} thc. frequencies to the same value, that is ;u =

- N modes for eath braen;-lm N7 lattice points in the crystal, there should be a t;la;:}
o nch, wEth the_degv..eneracy equal to N’. This approximation w

_ Sed by Einstein to explain the specific heat, and the resultant theory is called t}?:

Einstein model. A more th i
- > orough dis i i i i
-I ‘]: : = 1SCuss10n !'Egﬂl'dl!'lg the Einstein model will be giVCH

i :.mas.&in'goldaiS-identiga_lﬂigﬂthatnpf ;

Solution: We assume that the electron effec
gdnk&andxmusjwvalence '

free electrons, For.an fec Jattice, there.are fourJattice.
electrons. Consequently, the electron number density is

n=4/(4.08 x 1071%)? =5.89 x 1078 m™3 = 5.89 x 102 cm™
From eq. (3.53), the Fermi level at 0 K is

2
Ef= g’—(anzn)m —866x10771=54eV
m

" Comment: We give the number density in terms of cm— because such a umt

is commonly used in semiconductors. Typical dopant levels for silicon-based
semiconductor devices are ~10'7—10'% cm—3, which is much smaller than those in’

metals.

*This includes both ;
! acousticand optical m H
__ by the three identical acoustic bmncohis, odes. Ina Debye model, however, all the modes are approximated
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Einstein A
1; Model 1. AL
Optical 4k
w a h E
f&: g Acoustic Phonons Ehouogs : P, %ﬁﬁﬂg
.,"’a Debye f,’sj : 0f/
Z Model % : / g
: } : e
> ; 5
Phonon Frequency ® ©p Wg Phonon Frequency © ke, Figure 3,27 ‘Differential density of states and solid ang]
i e.
(@) ®)

Figure-3.26 Phonon density of states, (a) approximated by the Debye and Einstein model e e e Jolngle

and (b) in real crystals. . :

o o Although the density of states is usually defined on the basis of the magnitude of
wavevector k or energy, we found that it is useful in the study of transport process

The densities of states for the Debye and Einstein models are illustrated in figure 3 26 -to define a differential density of states. We first define the solid angle £ in k-spa
-space as

The Debye model gives D o *, while the Einstein model gives a spike at wg. Thi
different from the predictions of these~

densities of states in real c_xxstals can be quite
simple models, as illustrated in figure 3.26(b)- At e:ach uency that the phonon

intersect the zone boundacy, a | singularity,. Qa.ile.d J;he,ggig_ Ve
the density of states because the dis yﬁWp

dA
dQ = i 3] — si
2 sin6 df do ~(3.60)

\where dA; is a differential area i i

- where perpendicular to the k direction and 8 and

- ‘0 1 ar

3?: Saozlnguthall angles, defined in figure 3.27. With this definition, it is easy tf sh:\f Sﬁz
id angle over the entire space is 4. The differential density of states, along a

3 4.3 Photon Density of States specific wave vector direction k is defined as

Photons also have a linear disp ersion between frequency. and.i eCLOT - i No. of statos withi
which 3% identical to that of phonons under the Debye appmxlmanon : ., dDE K= ithin(E, E +dE) anddQ _ D (E)
: VdEdS . = 3.61)

electromagnetic wave in a cubic box of length L, LN sl : B here the . . :
decomposed into normal modes using Fourier sencs_,,as MW AR second equality applies to isotropic dispersions only.

allowable wavevectors are then

] kx,k,,k _0 :I:2rr/L :I:4Jr/L
ality with phonons. However, mgmﬁcam Ll

1]

(3.58) 3.5 Energy Levels in Artificial Structures

We

e zzﬁ—zged ugon ql:lan;um wells and quantum dots in the previous chapters. These

/ can be made by various synthesis routes such

B ety Toe oo such as molecular beam epitaxy and

. gy states of electrons, phonons, and ph

are often different from those i 7 e

: in their bulk counterparts. M

oo g e o s nterparts. Many of the novel properties

s originate from the different

e energy states and, consequentl

erent densities of states. These artificial structures can be categorized into twoqgroupz,

Hence, as before, photons share much £o
differences exist: unlike phonon wa waves in ¢ a crystal, wi wl’uchhave a minimum. Wayel

as imposed by the, mteratgggc d1stance,_wno such & % on the wavevector ! fe
hoto ollowing a d vatlon similar to phonons. we can obtam the densuy of states %

for an electromagnetic wave as
2

N i One HnPOSCS new bOundaI y COI ldltIOIIS as l]l qua] 1t weE. a]ld qua] 1t d()ts alld ﬂ 1€
) y ‘ m l]S um
1 D [‘ ) = —'—1 3 3 ‘Othel creates new PCIIOdICIty, as ln SupellattICeS. VV =) Wll]. brleﬂ y IHUS trate some exaIIlpleS

One difference in the above equauon from eq. (3.55) is that 2 factor of two m[;b:,{

than thngp is used to reflect the fact that electromagnens y_gywmlm
ions. onons can be longxtudmally polarized as well. The

“iransverse goianzauons! yhereas p
other difference is that while the phonon density of es has a cut-off frequency. given
by the : Debye frequency, , photons d¢ do not have such a cutoff - frequency. :

Ay A~

3.5.1 Quantum Wells, Wires, Dots, and Carbon Nanotubes

A v .
'Focgu:;:;mlwell can be formed by sandwiching a thin film between two other materials
ple, a thin layer of GaAs (typically < 200 A can be sandwiched betweer;
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Vacuum Level

k
Electron

Conduction F
ity

Band Edge

Bandgap E
(ALGa, ,As)

Valence
AE, I Band Edge >

E, (GaAs)

Figure 3.28 A quantum well can be

formed by sandwiching one material

(GaAs) between two materials

(Al;Gaj_;As). The top figure shows the

band-edge alignment. The band-edge offset

provides the potential barrier to confine -
electrons in the GaAs layer. Al GaAs

GaAs Al GayAs E

two Al,Gaj_,As layers, where the AlAs volume fraction x can be controlled to a
high precision between 0 and 1. Both GaAs and AlAs are semiconductors. AlAs
(bandgap 2.17 eV) and its alloy with GaAs, Al Ga;_yAs, have larger bandgaps than
GaAs (bandgap 1.42 eV). When two materials form an interface, a general rule for the

alignment of the bands is that the vacuum level must be the same. The energy required
to bring an electron from the conduction band edge to the vacuum level, that is, the
energy needed to take an elc;_:t_rqn out of the conduction band to vacuum, is called
the electron affinity [figure 3.28], which is different for different materials. For the
Al Ga,_, As/GaAs/Al,Ga;_x As sandwich structure, the final band-edge alignment is
shown in figure 3.28. A potential difference exists at the interface in both the conduction
band and the valence band, called the band-edge offset. For electrons in the conduction
band, the conduction band-edge offset AE, provides the potential barrier to form a
quantum well. Similarly, the valence band-edge offset provides a potential well for 3
holes. In chapter 2, we solved the energy levels for a one-dimensional quantum well. In
a realistic quantum well constructed of a thin film, the electrons are not constrained in
the x—y plane (the film plane) and the potential barrier is not infinitely high. Hence, the
solution is more complicated and will not be pursued here (see exercise 2.12). Instead,
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Solution: "1 ne allowable wavevectors for k, and ky are

2nn
kx, ky =iﬁ (n=0,1,2,..) (E3.5.1) .

thre ails the lattlce constant. Ihus the arca pel state 1 the k JT
’ xs» Ny
( ) n s k plane 18 (2 /L) o

B2k B272
Ekg, ky, 1) = —22 4 207
x, Ky, 1) P +n Sl (E3.5.2)

A 70l o ) -

Zher_e k’;y 2_ ;cx + k*y. 1]’Exammmg eq. (E3.5.2), we see that for energy E larger than

th,,t_ n*h i /(2m*d®) but smaller than E (1), there exist n series of k,, values
at can satisfy eq. (E3.5.2) because the value n in the last term can be an; integer

bet nan. h riEs, € UI“bEI (0] X
ween l a d ] Or eac 0! {he“.‘le n sel S

Arkeydhyy  Akpydley,

N = No. of states =
(27 /L)?

(for each allowable series of kxy)

= .25 :
where A = L* is the area along the x—y plane. From eq. (E3.5.2) we get

2
dE = %kxydkxy (for each allowable series of kxy) (E3.53)

(o} t.he eleCtIOH deIlSIt Of states per €nerg i erval and er unit area ()1 111 101 eaC]l
=] m

N m*

Di(E)= — =
NS R (E3.5.4)

Foranenergy state E,, < E < E(n+1), the total number of states is D(E) = nD1(E).

Th el tr denS 5’ fS p 3
€ electron 1ty of states fOI SuCh a dlS CIS1I0N I e]atlo]l 1S a statrcase, a 1HuStI ated
S

2 :\s &;ilh electrons, ;_}ffonon energy states in quantum structures are also altered because
den:‘:\r zmdary.condmons. P_igure'3.29 compares the phonon dispersion and the ;ﬁhonon
ity of states in a freestanding thin film (Yang and Chen, 2000). The phonon spectrum

we assume for simplicity an infinite potential barrier height in the z-direction. We then
can obtain the following energy—-wavevector relation from the Schrodinger equation,

72 : #2572 :
[ E(ky, ky,n) = — (K2 +K3) +n? s (h=12,...,N) (3.62)
i 2m* y 2m*d
1R0e bulk (3D) E, v
where d is the width of the quantum well and m* the electron effective mass. In the DE)
above relation, tilq_djspersion relations in the k, and ky directions are thg_ same as in A
the bulk material, but in the z-direction, the energy becomes discrete as given by the 4 # o
one-dimensional particle-in-a-box model presented in chapter 2. ' ; "4 L
L il SR o, 7 v
4 Y n=2
Example 3.5 Quantum well density of states Y 7 ;
n:
! TITTTTTTTT777

L

For the energy dispersion relation given by eq. (3.62), determine the corresponding %
Flgure E3.5 Density of states of electrons in a quantum well,

: electron density of states.
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Figure 3.29 (2) Phonon dispersion and (b) density of states In quantum wells (Yang and a0 :
- 80
Chen, 2000) = ]
(4
change can be seen experimentally through, for example, Raman spectroscopy, which - 80~ [, . e log], . las g
probes the phonons throu gh the frequency shift of a photon that interacts with a phonon € flegla = B
(Weisbuch and Vinter, 1991). Numerous studies -have been devoted to the effects of T ": 40 - ) *,lmu,lm m';cg
phonon confinement in quantum structures (Bannov et al., 1995). Recent applications % %.'
include the use of phonon confinement to reduce thermal conductivity and thus, increase = 4k >< §
the thermoelectric energy conversion efficiency (Chen, 2001). £ i iy 0 g
The quantum effects for nanometer-scale wires (quantum wires) and nanometer-scale 3 =
dots (quantum dots) are expected to be even stronger than in quantum wells because of — ] s o o'
the additional boundary conditions on the electron or phonon motion in one or two more 3 k aln kzd;’rr !
directions. A recent discovery is that of nanoscale tubular structures, particularly carbon ©) @

nanotubes (Iijima, 1991). A carbon nanotube can be considered as the rolling of an
atomic sheet (or several atomic sheets) of graphite carbon (Dresselhaus et al., 2001).
Graphite has a close-packed hexagonal structure, as shown in figure 3.5(c). The bonding
between different layers is through the van der Waals bond, which is weaker than the ‘
covalent bonds within each layer. If only one atomic layer rolls up, the nanotube thus
formed is called a single-walled carbon nanotube. If several layers roll up, the nanotube

multiwalled. Depending on the nanotube diameter and the orientation

formed is called
of the major crystallographie directions with the nanotube axis, the nanotube can be a 3
ffects. The electron and phonon energy |

semiconductor or a metal, due to quantum size €

states in carbon nanotubes are very different from those in their bulk materials, leading |
to some special properties. The mechanical strength and thermal conductivity of these ;
tubes are expected to be very high (Kim et al., 2001). Research is actively exploring |
various properties and applications of carbon nanotubes (Dresselhaus et al., 2001).

Fl ure 3 30 (al A SU(}& SL]]!C} ;,an.l(:e (B(J[‘ca-TaS(:i]l{: et al., 20 ’”] {b acoustic th]][}:ng m buik‘
g ' " }

s]h ] P

c con. ﬁnd phD!lOll dJS ersion (C:I alO]lg and l:d) perpendlcul&r o thc Supcllatﬂce p{anc (Yang aﬂd

interference filters that fzonsist of alternating layers of quarter-wavelength thin films
i&‘;ﬂ}:é lthl965k)n An optical wave can be‘ts)tally reflected when the wavelength matches
s o4 ;;ﬂl o ckness, as Fhe Bragg condition in figure 3.10(b) and eq. (3.18) dictates.
i 'intle ffl;iznc;;;tlg?tleilsltege:;pce éil’t;rs izligthgr in chapter 5. In an analogy.to the
optical ilters, Esaki and Tsu 70) proposed superlattices, which
periodic structures with the thickness of each layer less than the ele ; bt
;;ian fmchpath. Since the ellectron and phonon mean free path and wav(;tll-:r?gglr 3?;2(1::’.(:);
]ﬁneﬁ s(l.;z n:n analggy requires much thinner films than those used in optical interference
o ﬁ-1m decgui;l y, the concept was demonstrated only after the invention of advanced
o wal:,eSI on tecpmques such as .molecular beam epitaxy (Chang et al., 1973).
] s e prong;tlon‘ gnd energy s.tates in- superlattices can be modeled using the
il tielpo el, %eadmg to dFastlcall}_' different electrical and optical properties
i o 1Irlco.nst1tuent' mater;als (Weisbuch and Vinter, 1991). Phonons can also
19_-_;9) = ehavior, forming bandgaps and new energy states (Narayanamurti et al.
b’hano' Figure 3.30 shows an example of a model Si/Ge superlattice and the calculated,
e n ksp.ectra for acqusnc ‘phonons‘in a 'model Si/Ge-like superlatfice, together with
Hne acoustic phonon dispersion relations in bulk Si (Yang and Chen, 2001). We can

3.5.2 Artificial Periodic Structures

We have observed that the periodicity that naturally exists in bulk crystals plays
crucial rule in determining the electron and phonon energy levels. Natural systems :
are three dimensional, with a periodicity determined by the lattice constants. One can I.
also create artificial periodic structures, for example, by repeatedly growing a thin layer -
of GaAs and a thin layer of AlAs on the same substate. In fact, artificial periodic_
structures have been used widely in optical coatings, such as in the making of optical



ENERGY STATES IN SOLIDS 117

pho;o;:oar?dgap, similar to that .in the Kronig—Penney model for electrons. By extending
suck 8 cept to three dlfnenswns to make three-dimensional periodic structures wit]:
. &grl:o ”dj;::mp‘ara:lle to opt!cal wavelength, Yablonovitch (1986) proposed the concept of
vmcactivzllrsc?:mghﬁ(};mc Za;dgap structures. These photonic crystals have become a
: : and have potential applications i icati
-and optical coatings (Joannopoulos et al., 1992?1997).]]8 ¥ v
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3.6 Summary of Chapter 3

Figure 3.31 Unit cell

of a superlattice made of
two cubic crystals, being a
tetrahedron with a much
larger number of atoms

as the basis.

;Ih};: :?I?g\?it;u(:; t:}is cthapter are a;)ften covered, in a solid-state physics course, in at least
apters: crystal structure, electronic ener; ,
: i : Ire, gy states, and phonon ene
| f;:;jsn(gittel,a 1 396f,t Ashcroft and Mermin, 1976). This condensed chaptr;:rp introducesilg;}e,
t gy and often-used methodologies for the analysis of energy states i i
ool gy states in crystalline
5 ﬁgzs;gfggag characl;eristic of crystals is their periodicity, which is described
b stals are obtained by attaching a basis to i i
: v each lattice poiht. The basi
;:a:: ;::nms: of one a.tor‘n. ora g.luster of atoms. Lattices are described lfy the rier:nt;tais\fs
; H: . :el;:azzs.m irprtgume unllt cell contains one lattice point, but a conventignal unjet
._ e than one lattice point. One wa imiti
' ¢ : ) y to construct a primitive unit ¢
?za;:tlzlif:?;;i); 1es to tgox:rrlil thlv.:,/I Wigner~Seitz cell. In three-dimensional space, a total i)li"
14 xists. The Miller index method i : ;
et o od is commonly used to denote crystal
i A lattice is periodic in real ' ‘
space, and we often express a periodi ion i
. : _ periodic functio;
;ZTsr 0c;fa its Fourier trar‘lsf.o.rmatlor.l. The Fourier conjugate of real space is calledntlﬁe1
f A pﬁmjt‘spalce..’l'he pnmlt;.ve lattice vectors in reciprocal space can be calculated from
..fééigrocalxve attlciz \&:’c.:tors in real space. Diffraction experiments provide an image of
Te space. 1gner—Seitz cell in reci i
I procal space is called the fi illoui
zone. Later, we express the energy di i e
or s is i i
oo o gy dispersion of electrons and phonons in the frist
" In a periodi i
fbmaﬁgpj?:if structure, the eIechomf: energy levels form energy bands. The band
‘er"i ka monstrated by the solution of the Schrédinger equation based on the
: di'gperiion llrlle{i model. In ,rea.l.crystals, each crystallographic direction has its own
o ation. _'I‘he electronic band structure determines whether a material is metal
K 1:;:103 or insulator. In metals, an electronic band is only partially filled an(i
] ,e g move to the empty quantum states within the same band. The topmost
o bandn;rgy level at 0 K is called the Fermi level. If a band is totally filled agd the
<oy aslan energy gap from this band, electrons cannot move within the band
i e electron can go to the next energy band depends on the magnitude of thc;
o ni c[; :ﬁ:ﬁ? :!c; t%g ‘T“_IE?L energy which is 26 meV at 300 K. A n:ateriai can be
‘ e bandgap is relatively small such that there exi
iy g uch that there exist some electr
s bi?lienr;m;?]:henlfrgg to jump to the conduction band, leaving some vacant quant?:;:
; - If the bandgap is very large, no e i i
,,andlnmc S g lectrons can jump to the conduction band
: a 1 ion o
e I;zgncor;duct(')r, the rnot'lc_)n of electrons in the valence band can be described
i bandonso egulvalent positive charges, called holes, that occupy the empty stat
e Obtained. : enucgndLilcto_rs.c‘an be intrinsic or extrinsic. Extrinsic semiccfnzuctois
y adding impurities that have an energy level close to the conduction oi

ane, the period is still a and thus the maximum
ouin zone is 77 /a. In the cross-plane direction, the &

lattice constant of the original bulk lattice no longer represénts the true periodicity in this |
direction. It is the total thickness of one period, d, that represents the lattice periodicity -
in this direction. Thus the maximum width of the first Brillouin zone is 7 /d rather than
7 /a. The superlattice clearly has very different dispersion relations to those of the bulk *
materials. In the cross-plane direction, for example, a small gap, called a minigap, forms :
at every k, = 7/d in the phonon spectrum, similar to the electronic gap formation in I;
a one-dimensional Kronig-Penney model. The dispersion of high-frequency acoustic
phonons in bulk silicon becomes very flat inside a supetlattice because there are n
corresponding phonons in adjacent germanium layers; thes¢ phonons are confined inside

the silicon layer. Another way to think of these confined “acoustic” phonons is that the -
unit cell of a Si/Ge superlattice is no longer a cube as in bulk silicon or germanium, :
but a tetrahedron as shown in figure 3.31. It is a new material with a new unit cell that

n and one germanium atom).-

has more than one atom as the basis (at least one silico
However, we should remind ourselves that to form the new phonon or electron spectra s

as theoretically predicted using idealized models (such as Kronig-Penney or harmonic :
be much longer than one period thickness.

lattice dynamics), the mean free path must
We will discuss this point in more detail in chapter 5. ;

Superlattice structures made of alternating layers of thin films have artificial periodi-
city only in one direction. By periodically arranging quantum wires and quantum dots,
one can also make quantum wire and quantum dot superlattices that have artificial.
periodicity in two or three directions.

The periodicity in naturally existing crystals creates electronic bandgaps and phonon
branches, partially due to the fact that electrons and phonons can sample and feel individ-'
ual atoms and potential barriers and thus experience diffraction and interference effects.
This is not the case for optical waves (except X-rays) in naturally existing crystals, since

visible light usually has a quite long wavelength and thus averages over a large volume of
the crystal. The artificial optical interference filters that are made of alternating quarter-
wavelength layers create frequency ranges (called stop bands) along certain directions
that can completely reflect all incident photons. This phenomenon corresponds to the

see that, along the superlattice film pk
reciprocal lattice vector in the first Brill
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an contribute electrons to the conduction band or holes to

valence band such that they ¢
can also be divided into direct gap of indirect gap,

the valence band. Semiconductors
depending on whether the
identical or different wavevectors, respectively.
semiconductoris similar.to.the motion.of free.electrons, except.
be replaced by their effective.mases.
The vibration of atoms in a crystal was investigated using Newtonian mechanics,
assuming harmonic force interaction between nearest neighbors. The vibration can be
decomposed into normal modes, each having a specific wavevector and frequency. The
dispersion relation obtained between the wavevector and the frequency is identical to
the result from quantum mechanics., Quantum mechanics requires, however, that each
normal mode be quantized and that the minimum quantum has an energy of hv. This
minimum energy quantum is called a phonon, similartoa photon which is the quantized :
normal mode of an electromagnetic wave. Phonons can exist only in the first Brillouin ;
zone since larger wavevectors are meaningless in terms of atomic displacement. In three- -

dimensional crystals, one longitudinal acoustic mode and two transverse acoustic modes
exist along each crystallographic direction. If there are m atoms ina basis and N lattic
points, 3N acoustic modes and 3(m — 1)N optical modes exist.

An important counting method for the degeneracy of energy levels is the density of :

states. The density of states can be defined on the basis of per unit magnitude of the -
wavevector, per unit frequency interval, or per unit energy interval. The most often used
definition is based on the per unit energy interval. We have shown how to compute the
density of states for electrons, phonons, and photons, for three-dimensional structures
as well as structures of lower dimensions. ;

Artificial nanostructures, such as quantum wells, superlattices, carbon nanotubes,
and photonic, crystals, can have artificial energy levels and densities of states. These
artificial structures break down the analysis for bulk materials by imposing new boundary.
conditions and creating new periodicities that do not exist naturally in bulk materials_.:
The new energy states and densities of states lead to novel properties that are often
hard to find in bulk materials. To form the new energy spectra, the mean free path of §

the carriers (electrons, phonons, or photons) usually should be much larger than the

characteristic length; thus the most interesting regime is often at nanoscale, when these

conditions are relatively easily satisfied, which speaks strongly for the current interest

in nanotechnology.

The motion of electrons or holes In a
that their masses should

e - )

3.7 Nomenclature for Chapter 3

a lattice constant or length in B constant o
" figure3.11,m . ‘ 4 thickness of quantum well or period of
‘a primitive or conventional lattice superlattice, m : !
~ vector,m . ' ‘D density of states per unit volume, m™3
A constant; area, m? E energy,] i ;
b lengthin figure 3.11, m E.. conduction band edge,J
b reciprocal space primitive lattice f arbitrary function, periodic in time

vector, m™! BleieE B

Ashcroft, N.W., and i

v LW, Mermin

A" Philadelphia. P e

annov, N., Arist it i

e Defoi I?l‘ill’ti?)/;- gl)ltgrl'll&;l’..l?lrtl; aSctEiZZ(noi Q;I.A., 1995, “Electron Relaxation Time due
{ : . of Electr i i i

)11+ a Free-Standing Quantum Well,” Physical Review B(,)I:,';\ll.1 t;ll C;[I: ﬁ;;giofggxsnc e

interatomic force, N

reciprocal space lattice vector, m~!
Planck constant, J s

Planck constant divided by 27, J s
magnitude of wavevector, m~! -
wavevector, m™1

spring1 constant between atoms,
Nm™"; quantity defined by eq. (3.24)

L L-point of the Brillouin zone of an

fcc lattice, [111] direction; length
of crystal, m

mass, kg

effective mass tensor, kg

effective mass, kg

- integer; local electron

density, m3
total number of atoms in the crystal;
number of states ,

' constant in eq. (3.32)

charge per ion, C

quantity defined by eq-(3.24)
separation between atoms
nearest neighbor separation, m
atom position

translational vector

. integer

electron or photon amplitude
at detector =
time, s

period in time, s

atom displacemént from

its equilibrium position
interatomic potential, J
velocity, m s~!

*" volume of primitive unit cell, m;

volume of crystal
atom coordinate

" X-point of fcc reciprocal lattice,

[100] direction
Madelung constant for
Jonic crystals
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center of the first Brillouin zone
for an fec lattice
delta function, eq. (3.15)
band edge offset, J
parameter in Lennard-Jones
potential, J
2;(;::1_(:2:11Npﬁmﬁttivity in vacuum,
parameter in Born—Meyer repulsive
potential, m, eq. (3.4) ‘
polar angle
Boltzmann constant, J K~
wavelength, m
frequency of phonons
and photons, Hz
density, kgm™?
parameter in Lennard-Jones
potential, m
azimuthal angle
wavefunction
angular frequency, rad.Hz
solid angle, srad
Miller index of a crystal plane
Miller index for identical
crystal planes
vector along
a crystallographic direction

Subscripts

attractive

conduction band

Debye

Fermi level

bandgap

between atom i and atom j
repulsive

Cartesian coordinate direction
valence band

Superscript

complex conjugate
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Crystals: Putting a New Twi

3.9 Exercises

3.1 Number of atoms. How many silicon atoms are there in a cube of 100 A

1000 A, and 1 wm? e
3.2 Density of crystals. The lattice constants of germanium and GaAs are 5.66 A an
5.65 A, respectively. Ge has a diamond structure and GaAs has a zinc-blende;

structure. Calculate their density.

. 3.9 Electron density of states. For an elliptical electronic band

ENERGY STATES IN SOLIDS 121

3.3 Unit cell in real and reciprocal s
.  rea pace. A body-centered cubi i
following primitive translation vector: 4 R R P

1

Ez; g_or;lstruct the Wigner—Seitz cell in real space.
ind out the corresponding primitive translation vector i i
i or in th
and( p)rg\{(e that the reciprocal lattice is an fcc structure. < oy
c) Sketch the Wigner—Sei i i ¥
i) Sl gner—Seitz cell in the reciprocal space, that is, the first
3.4 Lennard-Jones potential. The values of the Lennard—Jones potential for noble

gas crystals are given in table 3.1 For argon ¢r
(a) Calculate the interatomic distance. ey

(b) Calculate the energy at the minimum (called cohesi
; hesive energy).
! M.l(lc) Cal;:ulate the effective spring constant between two argon agt}c,))ms
A iller index. Index the following planes in a sili ' et

S P a silicon crystal: (100), (110),

3.6 X—.rf':y c{éﬁ’mcf:’on. Inan X-ray diffraction experiment a, the angle formed between
tie mc1ccilent Lr;ly and the detector (20) is 90° and first-order diffraction peaks are
observed with the X-ray wavelength at 1 A. Determine the di
planes in this specific direction. e

R ; B o . N LR |
a=-a(-X+§+2); a a®—§+2); az= Ea(ﬁ+?—i)

3.7 Kronig—Penney model. For P = 35, find out possible solutions for Ka in

eq. (3.32). Convert the solution into i i
a relationship between waveve
energy and plot the solution in o
(a) extended zone representation,
(b) reduced zone representation.

: 3.8 Phonon spectra of a diatomic lattice chain. Consider a diatomic chain of atoms

as shown in figure P3.8. The masses of the two atoms are different but the spacin
and the 'spring constant between them are the same. Derive the fo]lowingp 'vcﬁ
expression for the phonon dispersion in this diatomic lattice chatn. Schemauilaﬂ
draw the phonon dispersion you obtained 3
1/2
sin? ( lka):' /-
2

4K
E M1M2

w2=K<M1 +M2)i g2 (Mit M, 5
MMy : MM,
where K is the spring constant and k the wavevector with the following values

4 T

> NN G
and N is the total number of lattice points in the chain.

¢ : iven by eq. (3.37),
derive an expression for the electron density of states. : Y ‘q e

M,

iAo Ao Aileiiio

14——‘ a —b, \qﬂ"\

Figure P3.8 Figure for problem 3.8.
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3.10 Electron density of states inside quantum wires. The electron energy dispersio
in an infinite potential barrier quantum wire can be expressed as

n2 mx[reNt (n)?
E (kg , &yn) = T +%:—;~ [(L,) +(Lz) ]
where £, n can take integer values 1, 2, . .. . Derive an expression for the electro
density of states and plot this-expression for Ly = L, = 50 A
3.11 Electron density of states inside quantum dots. Determine the electron density
of states of a cubic quantum dot with side length d = 20 A, assuming that th
electron effective mass equals the free electron mass.

3.12 Phonon density of states. Assuming that phonons of a three-dimensional crystal
obey the following isotropic dispersion relation,

/K
w=2,/—
m

where a is the lattice constant, derive an expression for the phonon density o
states. %

3.13 Debye approximation. Derive an expression for sound velocity from eq. (3.45)
Calculate the sound velocity for a monatomic fcc crystal along (100) and (111
directions, using this simplified expression. Assume that the mass of the atom is |
9.32 x10~23 kg, the lattice constant of the conventional fcc unit cell is 5.54 x

1010 m, and the spring constant is 7600 Nm .

3.14 Transverse and longitudinal phonons. Consider three separate acoustic phonon
in a three-dimensional isotropic medium with an effective lattice constan
of 2.5 A. The dispersion for each branch is w; = vik, @ = vk (degenerate).
For vz, = 8000 ms! and v; = 5000 m s~ plot the density of states as
function of frequency. i

3.15 Size effects on density of states. The density of states expressions we derived are-
valid when the separations between states are small and the number of states is.
large, such that we can calculate the number of states by eq. (3.50). In small }
geometries, the energy separations between different states can be large and the.:
number of states at each energy level can be small, so that eq. (3.50) is no longer:_
valid. As an example, consider a cubic cavity of (2 pm)? size. Find out how,
many states are allowed to exist inside the cavity for electromagnetic waves with '
a wavelength in the range of 0.5-1 pm, using the following two methods: b

(a) by finding out how many sets of (kx, ky, k) are allowed in this cavity that fall
into the given wavelength range; 1
(b) by integrating eq. (3.59) over the given wavelength range.

4

Statistical Thermodynamics
and Thermal Energy Storage

. ka
sin —
2

,quantum mechanics principles covered in the previous two chapters give the
| owab'le energy states of matter. The number of allowable states in typical macroscopic-
tter is usually very large, and at any instant, the matter can be at any one of these
states. Although our mathematical treatments in the previous two chapters were based
on solving theSteady-statesSchrodinger equation for the energy states and the wavefunc-
tions, matter will not stay at one i i ic state) for lon
ause of the interactions among particles (atoms, molecules, electrons, and phonons)
. in the matter. For example, we assumed a harmonic potential between atomis to obtain the
phionon dispersion relation. In reality, the interatomic potential is not hamnonic, as one
can easil.y infer from examining the Lennard-Jones potential. When the anharmonicity
the deviation from the harmonic potential) is small, the solutions of mé‘s?éﬁ%&‘?iéé? !
qaﬁon for the guantum states based on the harmonic potential are approximately
mect. Yet a small degree of anharmonicity can cause a rapid (~10-°~10~13 ) change
the matter from one quantum state to another. Due to the large number of quantum

2 Stdtes to the macroscopic behavior is provided by statistical thermodynamics, which
terrmnes the probability that matter will be at a particular quantum state when it is at
-+ Squilibrium. Through statistical thermodynamics, temperature enters into the picture of
S.energy. storage and transport.
= 3tn 1]115 chapter, we focus on the €quilibrium state bf a system and discuss different
p}'obablhty functions for systems under different constraints, such as an isolated system
,;P u:‘system_at constant temper_alurc. From the probability distribution functions, we
(Will show how to calculate the internal energy and specific heat of a system, including

Al 123
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nanostructures, using what we learned in previous chapters about the energy levels

degeneracy, and the density of states.

4.1 Ensembles and Statistical Distribution Functions

Figure 4.1 A microcancnical ensemble is made of isolated systems with fixed U, V, and ¥

e history of a system and observe its
.. Eachsystem corresponds to one accessible quantum state of the original system.

In an actual experiment, we often follow the tim
time-averaged behavior. In analysis, however, following the time history requires the =
solution of master equations that govern the motion of a large number of particles,
such as the Newton equations of motion and the time-dependent Schrisdinger equation.
Although, with increasing computational power, such computation is becoming feasible
for limited situations, as in the molecular dynamics simulations to be introduced in
chapter 10, for most applications direct computation of the time history is impractical.
Statistical thermodynami ids th averaging by introducin ensembles, which

are laroe collections of systems each scopic state that satisfies the &

macroscopic constraints. Exam Tes of the macroscopic constraints of a system afe its
total energy, temperature, and volume. The guantities to be measured are averaged over 2

ihe ensemble at a fixed time, rather than, as in an experimental situation, over a time
“period of a single system. A fundamental assumption made in statistical mechanics

\\'\, is that the ensemble average of an observeC GUANC cqual to_the time averag

-7 | of the same quantity. This assumption is called thefgrgodic E yéogesrs]"'fﬁb{ study ©

: ostulate]in statistical mechanics is that an isolated macroscopi

] i L scopic system samples

i accessible quantum state with equal probability. This postulate 1s als)(; called thsm__'e;_z;.{;g
L ofequal grobaf.nhgu Tf Q is the total number of accessible quantum states, the probability
of each accessible quantum state, denoted by s, being sampled is

pnce the probability 0_1'c each accessible quantum state is known, we can construct a
ygg ;3 a;:la:::eulzlte a desired r{lacroscopic quantity (X) of a macroscopic system. We
f 2 e corresponding property X (such as temperature, pressure) for each
accessible quantum state, and then calculate the average according to

conditions necessary for this hypothesis to be valid is an ongoing Tesearch area (Kubo o
et al., 1998). Our analysis will assume that all systems are ergodic. Depending 0! 3 (X) = Z P(s)X(
the macroscopic constraints, yarious ensembles are developed, each has 2 probability : =~ 5) . 4.2)

distribution for the microscopic states in the ensemble that differs from other ensembles
In the following, we will discuss three ensembles: microcanonical, canonical, and gran

canonical ensembles.

Note that the summation is over all accessible quantum states.
Because. each accessible quantum state is a state of the system that satisfies the
: }_macro.scopw cqnstraints and each one has equal probability to be sampled, w
. effectively dealing with a collection of  stationary systems, as shown fn ﬁ, ur64aI1e
._’55131‘;3: ls}ys‘t/ems grjev ider(lltical from the macroscopic points of vi,ew; that is t.heygha\('je the
2 , 'V, an and are all isol i i is c i
systems is called an ensemble. Aof;l fom e d-S 00_1le 0“ O'f si‘
._z:_% The principle of ua! E‘Obabilil is valid ‘ each “ rﬂ-
d g:r:i v:::;zmizalﬁtltier, wfe will mu'oduc:", canonical and grand canonical ensembles
S e fm thel Hfly o each‘system in such ensembles on the basis of results
u'i : - crocanonical ?nsemble. Equation (4.2) means that each of
the stationary systems in the ensemble is sampled once in the computing of the aver-

‘age. Such an average is call i i
E:(s) By i g ed the ensemble average. For a microcanonical ensemble,

4.1.1 Microcanonical Ensemble and Entropy

Unlike classical thermodynamics, which completely neglects the microscopic processes

in a system, statistical thermodynamics builds the system props rties from its microscop ic
states (Kittel and Kroemer, 1980; Callen, 1985). We consider an isolated macroscopic
system with a volume V, a total number of particles N, and a tota

~copic constraints). The quantum states of the system that satisfy these macroscopic
constraints are called :thm simply accessible states). Given
{hese macroscopic constraints, together with detailed information about the interatomi
potentials between the particles in the system and the initial conditions, one could in}
principle solve the Schridinger equation to follow the temporal evolution of the system
among the accessible quantum states. The macroscopic properties of the system, Suc
as temperature and pressure, are a measure of the average corresponding microscopi
properties over a certain amount of time.

How can we calculate the average values of this system? If we performed an expen
ment, we would measure these values as a function of time and carry out a time averag
In statistical mechanics, instead of tracing the time evolution of the system, we focus on,
the probability of a system being at a specific accessible quantum state. A fundamen!all

Q
(X) = X:X(S)/Q (4.3)

s=1

S . ; ;
- n;_;l:; ;rd;z‘i] Efezzual gxl'obability for each accessible quantum state in an isolated system
(oo uon onable for some readers. For example, for a system of 1023 particles,
e c‘luar.ltm.n st'ate might be that one particle has energy U and the rest have
nergy. This distribution of energy among N particles seems to be a quite unlikely




